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 Abstract − The dielectric loaded horn radiators are 
commonly used in various applications due to their 
distinguished features, such as low cross-polarization, 
pattern symmetry and simple production. The 
analysis of this kind of horn, mode matching (MM) 
and integral equation methods have been preferred in 
the literature. In the present study, the radiation of 
plane harmonic scalar waves from a dielectric loaded 
circular horn radiator is treated by using the mode 
matching method in conjunction with theWiener-
Hopf technique. The solution is exact but formal 
since infinite series of unknowns and some branch-
cut integrals with unknown integrands are involved. 
Approximation procedures based on rigorous 
asymptotic are used and the approximate solution to 
the Wiener-Hopf equations are derived in terms of 
infinite series of unknowns, which are determined 
from infinite systems of linear algebraic equations. 
Numerical solution of these systems is obtained for 
various values of the parameters, of the problem. 
Their effect is presented on the directivity of the 
circular feed horn.  
 
Key words − Dielectric loaded wide angle scalar horn 
radiator, Wiener-Hopf Technique, integral equations, 
circular waveguide, step discontinuity. 
 

I.   INTRODUCTION 
 

In the recent years, scalar feed horns are 
commonly used widespread applications such as 
feeds in reflector radiator systems used in microwave 
and acoustics, because of their well-known properties 
of pattern symmetry and zero or low cross-
polarization. To analyze the performance of such 
feeds, one needs to know accurately their near- and 
far-field patterns. The aperture fields of a pure-mode 
horn are generated by a single mode, which is the 
dominant mode in the waveguide. These horns use 
"hybrid" modes where there is a single mode, which 
is composed of hybrid combination of two other 
modes. The scalar feed is circular horn antenna with 
grooves, perpendicular to the wall of the horn. The 
grooves change the fields so as to provide desirable 
properties of axial beam symmetry, low side lobes 
and cross-polarization. This means that the horn 
produces an aperture field in which the field’s 
distributions are approximately linear. The very low 
cross-polarization means that the field in the aperture 
are essentially scalar and for this reason, the 

corrugated horn is sometimes referred as scalar horn 
[1]. The radiation characteristics of circular 
waveguides and horns have been the subject to 
several previous investigations [2 - 5]. Some of the 
approximate and computational methods such as 
surface integral methods; hybird MM/ finite element 
(FE)/ method of moment (MoM)/ finite difference 
(FD) methods have been presented for the analysis of 
horns [6]. The analysis reported in [7] is recently 
generalized [8] to the case where the aperture's inner 
surface and the intersection area with the flange of 
the waveguide horn are treated as different 
impedance materials. The aim of the present work is 
to produce an analysis of the case where the aperture 
of the waveguide horn is loaded as different dielectric 
materials, as shown in Fig. 1. 

  
a. Dielectric loaded circular horn radiator. 

 

 
 

b. Geometry of the problem. 
 

Fig. 1. a. Dielectric loaded circular horn radiator, b. 
geometry of the problem. 

 
The aperture region of the scalar horn is loaded 

by a simple dielectric material (non-magnetic and 
non-conducting-dielectric rod) having the permitivity 
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1ε . The variables 1η  and 2η  are the complex 
admittance of the aperture's inner surface of the horn 
and the intersection area with the flange of the 
waveguide, respectively. To this end we consider the 
problem of dominant modes in the circular 
waveguides propagating out of semi-infinite duct, via 
another coaxial cylindrical duct of finite length and 
bigger radius, and the issuing into free space. 

In the progress of the radiation pattern analysis 
of dielectric loaded scalar feed horn, attention has 
been given to consider the propagation of plane 
waves by circular structures, because the complexity 
of these structures is not always possible to obtain 
rigorous analytical solutions to radiation problems. 
The Wiener-Hopf Technique is applicable to open 
and closed structures. 

The method adopted here is similar to the one 
employed in [8] and consists of expressing the total 
field in the waveguide region in terms of normal 
waveguide modes and using the Fourier transform 
elsewhere. To this end, by introducing the Fourier 
transform for the scattered field and applying the 
boundary conditions in the transform domain, the 
problem is reduced into a modified Wiener-Hopf 
equation. Using the mode matching method in 
conjunction with the Wiener-Hopf technique the 
radiation of plane harmonic scalar waves from a 
scalar feed horn were treated. The solution is exact 
but formal since infinite series of unknowns and 
some branch-cut integrals with unknown integrands 
are involved. Approximated procedures based on 
rigorous asymptotic are used, and the approximate 
solution to the Wiener-Hopf equations are derived in 
terms of infinite series of unknowns, which are 
determined from infinite systems of linear algebraic 
equations. Numerical solution of these systems is 
obtained for various values of the parameters of the 
problem and their effect on the directivity of the 
scalar feed horn is presented. The time dependence is 
assumed to be ( )exp i tω− , with ω  being the angular 
frequency, and is suppressed throughout the paper. 
 

II.   ANALYSIS 
 

Consider the radiation of a time harmonic plane 
wave propagating along the positive z  direction from 
a rigid cylindrical horn is defined by, 
{ }= , ( ,0)a zρ ∈ −∞  ∪  ( ){ }, , = 0a b zρ ∈  ∪  

{ }= , (0, )b z lρ ∈  where ( ), , zρ φ  denotes the usual 
cylindrical polar coordinates (Fig. 1). From the 
symmetry of the geometry of the problem, and of the 
incident field, the scalar field everywhere will be 
independent of .φ  
Assuming the incident field is given by 

  ( )= expiu ikz    (1) 
where = /k cω  denotes the wave number. For the 
sake of analytical convenience we will assume that 

the surrounding medium is slightly lossy and k  has a 
small positive imaginary part. The lossless case can 
be obtained by letting 0Imk →  at the end of the 
analysis. 
The total field ( , )Tu zρ  can be written as, 
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By considering 1k  as the wave number of dielectric 
region, ( , ),ju zρ  = 1 5j −  denote the scattered fields 

( , ),ju zρ  = 1 5j − , which satisfy the Helmholtz 
equation, 

2
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ρ ρ
ρ ρ ρ
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      (3b) 

is the expression to be determined with the help of 
well known boundary, edge, and radiation conditions 
for the perfectly conducting structures. The boundary 
condition on the internal surfaces of the horn yield 

= 0u ik u
n

η∂
+

∂
 , where n  is the normal pointing 

outward the lining, and η  is the complex specific 
admittance of the surfaces, 

1 2( , ) = ( , )u b z u b z , < 0z ,   (4a) 
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 , < 0z ,   (4d) 
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ρ
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 1 1 4( ) ( , ) = 0ik n u b z
ρ
∂

−
∂

  ( )0,z l∈ ,  (4h) 

3( ,0) iu uρ +  , ( )0,aρ ∈  ,   (4i) 

 3( ,0) iu u
z z

ρ∂ ∂
+

∂ ∂
, ( )0,aρ ∈ ,   (4j) 

   4 5( , ) = ( , )u l u lρ ρ , (0, )bρ ∈  ,           (4k) 

 54 ( , ) = ( , )uu l l
z z

ρ ρ∂∂
∂ ∂

, (0, )bρ ∈ ,   (4l) 
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 2 ( ,0) = 0u
z

ρ∂
∂

, ( ),a bρ ∈ ,   (4m) 

 4
1 2( )( ,0) = 0uik n

z
ρ∂

+
∂

, ( ),a bρ ∈ .   (4n) 

To ensure the uniqueness of the mixed boundary-
value problem, one has to take into account the 
following radiation and edge conditions, 

   2 2, =
ikreu r z
r

ρ≈ + ,    (4o) 

   ( 0, ) =Tu b z O+ , 0z → − ,  (4p) 

 1/3( 0, ) = ( )Tu b z O z
ρ

−∂
+

∂
, 0z → − , (4q) 

  ( , ) =Tu b z O , 0z l→ + ,   (4r) 

 1/ 2( , ) = (( ) )Tu b z O z l
ρ

−∂
−

∂
, 0z l→ + . (4s) 

By taking the Fourier transform of ( , )u zρ  with 
respect to the variable z and considering also above 
mentioned boundary and continuity conditions in the 
transform domainα , the problem is reduced into the 
following modified Wiener-Hopf equation of the 
third kind, which is valid in the strip 

( ) < ( ) < ( )Im k Im Im kα− , 
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where 
0
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Using the factorization and the decomposition 
procedures together with the Liouville theorem, the 
modified Wiener-Hopf equation in (5a) can be 
reduced to the following system of Fredholm integral 
equations of the second kind, 
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where the paths of integration L+  and L−  are depicted 
in [7]. Here, ( )( ),R Qα α+ +  and ( ) = ( )R Rα α− + − , 

( )Q α− ( )= Q α+ −  are the split functions [8] regular 

and free of zeros in the upper ( )( )>Im Im kα −  and 

lower ( )<Im Imkα  halves of the complex α −  
plane, respectively, resulting from the Wiener-Hopf 
factorization of ( )R α  and ( )Q α , which are given by 
(5f) and (5g), in the following form, 

( ) = ( ) ( )R R Rα α α+ − ,   (7a) 

 ( ) = ( ) ( )Q Q Qα α α+ − .   (7b) 

The explicit expressions for ( )R α+  and ( )Q α+  can 
be obtained by using the results of [9], [10]. For 

>> 1kl  , the coupled system of Fredholm integral 
equations of the second kind in (6a) and (6b), are 
susceptible to a treatment by iterations 

( ) ( )1 2
( , )_ = ( , ) ( , )b b bH H Hα α α

+ + +
+ +  , (8a) 

( ) ( )1 2
( , )_ = ( , ) ( , )b b bH H Hα α α

− − −
+ + .  (8b) 

 
III.   MODAL MATCHING TECHNIQUE: 
DETERMINATION OF THE EXPANSION 

COEFFICIENTS 
 

Modal matching technique (MMT) is a powerful 
numeric method of analyzing horn radiators in which 
the actual profile of the horn is replaced by a series of 
uniform waveguide sections. The MMT can be 
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considered as a method of obtaining the overall 
transmission and reflection properties of a horn. The 
horn is represented as a box as shown in Fig. 2, where 
[A] and [B] are column matrices containing the 
forward and reflection coefficients of all the modes 
looking into the horn from source side. Similarly, [C] 
and [D] represent column matrices containing the 
forward and reflection coefficients of all the modes 
looking into the aperture of the horn from outside [11 
- 13]. 
  

 
[ ] [ ]

= [ ]
[ ] [ ]
B A

S
D C

⎡ ⎤ ⎡ ⎤
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 [ ] 11 12

21 22

[ ] [ ]
S =

[ ] [ ]
s s
s s

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
Fig. 2. Horn represented as a scattering matrix [S]. 
 
The field in the cavity can be expressed in terms of 
the waveguide normal modes as follow, 
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Here nξ  's are the roots of the characteristic equation 
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Similarly, in the region 0 < < ,bρ  0 < <z l , 

( )4 ,u zρ  can be expressed in terms of the following 
normal waveguide modes, 
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Inserting the series expansions of ( )g ρ  and ( )h ρ  
[14] given in equations (5l) and (5m) into equations 
(11c) and (11d), respectively, and using equations 
(9a) and (10a) we get, 
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Multiplying both sides of equations (12a) and (12b) 
by 0 ( )l bJ ρρ ξ  and by 0 ( )l aJ ρξ , respectively, and 
integrating from 0  to b  and from 0  to a , 
respectively, we obtain the following system of linear 
algebraic equations (13a)-(13f), 
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to (13i) result in 3( 1)N +  equations for 3( 1)N +  
unknowns. The solution of these simultaneous 
equations yields approximate solutions for ( , ),b kH +
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The function 1/2 ( )W ξ−  is related to the Whittaker 
function 1/2,0 ( )W ξ−  [15] by the relation (14h), 

1/2
1/2 1/2,0( ) = exp( /2) ( )W Wξ ξ ξ ξ−
− − .          (14h) 
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By substituting equations (13g) and (13h) into 
equations (14a) and (14b) and also considering 
equation (13i), one can easily obtain the three infinite 
systems of linear algebraic equations with 
coefficients np  , nq  and nf  . 
 

IV.   THE RADIATED FAR-FIELD AND 
COMPUTATIONAL RESULTS 

 
The radiated field in the region > bρ  can be 

obtained using,  
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0
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where L  is a straight line parallel to the real α  -axis, 
lying in the strip ( ) < ( ) < ( )Im k Im Im kα−  . Utilizing 
the asymptotic expansion of (1)

0 kH ρ( )  as kρ →∞  
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0 ( )

2= i KKH e
K

ρ π
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The asymptotic evaluation of the integral in equation 
(15a) using the saddle point technique yields for the 
diffracted field for 2 2 >> ,k z klρ +  
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where ( , )bH α
+

 and ( , )bH α
−

 are given by 
equations (6a) and (6b), respectively. 1 1, ,r θ  and 2 2,r θ  
are the spherical coordinates defined by  

1 1= sinrρ θ , 1 1= cosz r θ    (17a) 
and 

2 2= sinrρ θ , 2 2= cosz l r θ− .  (17b) 
In the far field region equation (16) reduces to 
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1 1
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(18) 
We can see that mf  and mq  decay exponentially with 
m  so that the infinite algebraic systems converge 
very rapidly. Thus, they can be solved by truncating 
the infinite matrix and numerically inverting the 
resulting finite system. The value of the truncation 
number N  is increased until the final physical 
quantities such as the amplitude of the radiated field 
or the reflection coefficients become insensitive up to 
desired digit after the decimal point. 

The reflection coefficient is calculated by using 
hybrid mode-matching (hMM)/ method-of-moment 
(MoM) technique presented in the waveguide 
synthesis program for waveguide networks WASP-

Net [16]. The reflection coefficient calculating by 
WH is very close to hMM-MoM. The discrepancy 
between WH and hMM-MoM is %0.23 at the 
dominant mode propagation of the waveguide. The 
amplitude of the reflection coefficient is reduced by 
increasing the radius of the waveguide (ka) and the 
length of the aperture (kl) while kb is fixed. It is 
observed that the relative errors are reduced for 
higher frequencies by increasing number truncation 
number N. 
Showing numerically can make another effective 
check of the analysis that the continuity relation in 
equation (12b) is satisfied. The absolute error is less 
than %1.02 for 14N ≥ . 
 

 
Fig. 3. Normalized radiated field versus the 
observation angle for different values of the 1k  

1 1 2 2 1 2( = , = , , > 0)iX iX X Xη η . 
 

Figure 3 shows the variation of the normalized 
diffracted field amplitude ( ) ( )1 1 1 1 1, / ,0u r u rθ  versus 

the observation angle 1θ , for different values of 1k  
when ,ka kb  and kl  is fixed. Note that the directivity 
of the horn increases with increasing values of the 
dielectric material. Also it has been noted side lobe 
level is decrease explicitly with increasing values of 
the dielectric material. 

 
Fig. 4. 3dB beam-width to aperture diameter ( 2 /b λ ) ( 

1 2= = 0.1, / = 0.6, = 1.5X X a lλ λ  ). 
 

Figure 4 shows the variation of the -3dB 
beamwidth versus the observation angle for different 
values of normalized aperture diameter. The 3-dB 
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beamwidth decrease with the increasing values of 
2 / .b λ  Also note that the 3-dB beamwidth of the horn 
decreases with increasing values of the dielectric 
material. 

Finally, Fig. 5 display the amplitude of the 
relative power level obtained in the present work for 

0 0875a λ = . , 0 5b λ = . , 1.6l λ = , the numerical 
results calculated by using MoM programmed by 
[17]. We can see that the results obtained in this work 
approach the numerical solution for 1 2η η=  and fit 

quite well along the observation angle. 
 

 
Fig. 5. Relative power level versus the observation 
angle (comparison with the MoM solution). 
 
 

V.   CONCLUSION 
 

The radiation of plane harmonic scalar waves 
from a dielectric loaded using the mode matching 
method in conjunction with the Wiener-Hopf 
technique treats scalar feed horn. The solution is 
exact but formal since infinite series of unknowns 
and some branch-cut integrals with unknown 
integrands are involved. Approximation procedures 
based on rigorous asymptotic are used and the 
approximate solution to the Wiener-Hopf equations 
are derived in terms of infinite series of unknowns, 
which are determined from infinite systems of linear 
algebraic equations. The advantage of the WH 
Technique over other methods is that it is rigorous in 
the sense that the edge condition is explicitly 
incorporated in the analysis and that it has the 
potential of providing accurate and reliable results 
over broad frequency ranges. Furthermore, contrary 
to some numerical techniques, which are efficient 
only when the problem involves finite boundaries of 
limited length, the WH method does not suffer from 
restrictions. Numerical solution of these systems is 
obtained for various values of the dielectric materials 
of the problem and their effect on the directivity of 
the circular feed horn is presented in the scope of this 
work. By dielectric loading, it is possible to 
narrowing of the beamwidth and can provide low 
levels of the side lobes. 
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