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Abstract ─ We propose an efficient coarse-grid approach 
to the sensitivity analysis with full-wave electromagnetic 
(EM) time-domain simulations. In order to compute the 
response sensitivity using an adjoint approach, 
waveforms at all perturbation grid points need to be saved 
and post-processed. Therefore, the memory requirements 
of the response sensitivity analysis may become 
excessive for electrically large objects or problems with a 
large number of optimizable parameters. The use of 
coarse grids can reduce these memory requirements 
drastically and improve the computational efficiency of 
the sensitivity analysis while maintaining good accuracy. 
In this paper, we show that the discretization step size 
used in the sensitivity computation can be many times 
larger than the step size used in the finite-difference time-
domain (FDTD) simulation. The effects of the coarseness 
of the grid on the accuracy of the sensitivity analysis are 
investigated. Verification is carried out through 1-D, 2-D 
and 3-D lossy dielectric structures using commercial 
FDTD solvers. 
 
Keywords: Time-domain analysis, sensitivity analysis, 
Jacobian computation, and adjoint-variable method. 

 
I. INTRODUCTION 

 
The sensitivity analysis of microwave problems is 

important in gradient-based computer-aided design [1-4] 
and inverse-problem solutions [5]. It yields the response 
gradients (Jacobians) with respect to the optimizable 
shape and material parameters. Jacobians are widely used 
for efficient optimization, modeling, tolerance and yield 
analyses. 

Jacobians are usually computed using response-level 
finite differences (FDs). For a problem with n design 
parameters, such an approach requires n additional 
simulations if forward or backward differences are used. 
The optimization cycle can easily become prohibitively 
slow due to the computational demand of the full-wave 
simulations. Beside its inefficiency, it is also shown in  [6] 

to [7] that the FD approaches are unreliable, i.e. they may 
be prone to numerical noise [6]. 

In contrast, the Jacobian computation using adjoint-
based methods is efficient and reliable. Over the last 
several years, the adjoint variable method has been 
studied extensively in the sensitivity analysis of transient 
electromagnetic (EM) systems. An adjoint approach 
needs at most two system analyses to compute the 
response Jacobians regardless of the number of the 
optimizable parameters. In [1-3], Chung et al. have 
proposed an exact adjoint-variable expression for high-
frequency problems. This exact approach is only 
applicable to unstructured-grid solvers since analytical 
system matrix derivatives are needed. Later, Nikolova et 
al. [8] and Bakr and Nikolova [9] proposed a new 
adjoint-based time-domain approach based on finite-
difference time-domain (FDTD) and transmission-line 
matrix simulations. A discrete sensitivity expression of 
second-order accuracy is derived based on the E-field 
vector wave equation [8]. This approach does not need 
analytical system matrix derivatives and allows 
sensitivity computation on structured grids.  

Recently, we proposed a self-adjoint approach to 
compute responses, such as network parameters or point-
wise response functions, and their Jacobian matrices use 
only one EM system analysis [7, 10-11]. Our approach is 
efficient, accurate and versatile. The adjoint field solution 
is obtained directly from the original field solution by 
some simple mathematical transformations. Adjoint 
simulations are not needed. Thus, this self-adjoint 
formulation reduces in half the computational cost in 
comparison with the existing adjoint methods [1-3] and 
[8-9]. More importantly, it is applicable with commercial 
EM solvers, since the Jacobian computation is reduced to 
a post-process of the EM field solution. In contrast, 
currently existing adjoint approaches [1-3] and [8-9] are 
only applicable to in-house codes. This is because the 
excitation distribution of the adjoint simulations is 
response dependent, which is difficult to set up in a 
commercial solver.  
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In our original self-adjoint approach, the sensitivity 
solver adopts the grid of the FDTD simulation for the 
computation of the response gradient. For this 
computation, at each perturbation grid point, the 
waveforms of all three E-field components need to be 
stored. However, this may increase the memory 
requirements, especially in the case of electrically large 
regions whose permittivity or conductivity distribution is 
being optimized. For some time-domain solvers, the 
speed of the overall simulation may be affected as well. 
This happens if the simulator stores on the hard disk the 
requested E-field solution at each iteration  [12]. Slow-
down due to recording the field solution is insignificant if 
the latter is exported after the simulation is over  [13]. 
Even in this case, when the time-domain simulation is 
very long and the number of required field points is large, 
the memory requirements may become excessive.  

In order to alleviate the problems described above, 
we propose the use of an independent coarse FD grid for 
the sensitivity analysis. We show that this grid can be 
many times coarser than the one used in the FDTD 
simulation. Recommendations are given for a proper 
choice of its step size. 

We start with a brief overview of the time-domain 
self-adjoint sensitivity analysis. Then, we describe the 
implementation of the coarse-grid in inhomogeneous 
structures containing lossy dielectric objects. We 
investigate the accuracy of the proposed coarse grid 
approach through 1-D, 2-D and 3-D examples. 

 
II. BACKGROUND 

 
A. Self-adjoint S-parameter Sensitivities 

The S-parameters of a multi-port structure can be 
expressed as [7], 
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Here, Tmax is the simulation time; the subscript q in 
Eq denotes the field solution when port q is excited, and 
the superscripts out and in denote the outgoing (scattered) 

and incoming (incident) wave, respectively; ξM  
( ,p qξ = ) is the field modal (orthonormal) vector at port 
ξ   [14]; xξ′  and yξ′  ( , )p qξ =  are the coordinates at the 
ξ th port plane; 0Zω

ξ  ( , )p qξ =  is the wave impedance of 
the ξ th port; and 0ω  is the frequency at which the S-
parameters are computed. For brevity, the superscript 0ω  
will be omitted but implied in all formulas hereafter. 

Consider a set of N optimizable 
parameters np , 1,...,n N= , which represent the shape and 
constitutive parameters of the structure. Assuming that 
the parameter changes do not affect the port waveguides, 
the derivative of the S-parameter with respect to np  is, 

1 , 1,...,pq q pq

n p nq

S Z F
n N

p Z pF
∂ ∂

= ⋅ ⋅ =
∂ ∂

.           (4) 

The complex response pqF  whose derivative is 
needed in equation (4) allows for a self-adjoint 
formulation of the sensitivity problem. This means that 
the associated adjoint-field solutions ˆ( )p RE  and ˆ( )p IE  
[9] can be obtained from the original-field solution pE  
where port p is excited. Here, ˆ( )p RE  and ˆ( )p IE  are the 
adjoint fields needed to compute the real and imaginary 
parts of /pq nF p∂ ∂ , respectively. Thus, in our self-adjoint 
formulation, adjoint simulations are not needed. The 
computation of ˆ( )p RE  and ˆ( )p IE  from pE  is briefly 
explained below. 

The adjoint current density ˆ
pqJ  is the derivative of 

the local response ( , )f E p  with respect to the field E  at 
the pth port [8]. Its distribution across the port is the same 
as that of the current density J. In the case of the pqS  
derivatives, the real and imaginary parts of ˆ

pqJ  are [7], 
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When the adjoint problem is excited by ˆ
pq−J  and 

runs backwards in time, i.e. maxT tτ = − , it is equivalent to 
the original problem [8]. To make the adjoint simulation 
in the backward running τ -time identical to the original 
one in forward t-time, we assume that the adjoint problem 
is excited by the reversed pulse ˆ( ) ( )g g tτ = , where ( )g t  
is the time waveform of the original excitation. The 0ω  
spectral component of ˆ ( )g t  is related to that of ( )g t  as 
[7], 

0 0 0 maxˆ ( ) cos( )m gg t G t Tω ω ϕ ω= − −     (8) 
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where mG  and gϕ  are the magnitude and phase of the 0ω  
spectral component of ( )g t . Due to the equivalence 
between the original and the backward-running adjoint 
problem, the adjoint field is related to the original one at 
a point P as, 

max
ˆ ( , ) ( , )p pP T t P t− =E E                 (9) 

and its 0ω  spectral component is 

0 0
( ) 0 ( ) 0 max

ˆ ( , ) | | cos( ),  , , .P e p Pp pE P t E t T x y zω ω
ζζ ζ ω ϕ ω ζ= − − =  (10) 

Here, ζ  denotes the vector component; 0
( )| |PpEω

ζ  
and ( )e p Pζϕ  are the magnitude and the phase of the 0ω  
spectral component of the original pEζ  waveform at P. 

By comparing the desired adjoint excitation 
waveform in equation (7) with that in equation (8), the 
adjoint field of equation (10) should be adjusted both in 
magnitude and phase in order to obtain ˆ( )p RE  and ˆ( )p IE  
as [7], 

( )

0

0
( )

0 ( )
0 0

ˆ( ) ( , )

| |
     cos / 2

Rp

p P
e p P g

p m

E P t

E
t

J G t z

ω
ζ

ω
ζ

ζω ϕ ϕ π
ω β

=

− + −
∆ ∆

 (11) 

( )

0

0
( )

0 ( )
0 0

ˆ( ) ( , )

| |
    cos ,   , , .

Ip

p P
e p P g

p m

E P t

E
t x y z

J G t z

ω
ζ

ω
ς

ζω ϕ ϕ ς
ω β

=

− + =
∆ ∆

(12) 

Here, mG  and gϕ  are the magnitude and phase of the 
0ω  spectral component of the original excitation 

waveform ( )g t ; 0
( )| |p PEω

ζ  and ( )e p Pζϕ  are the magnitude 
and phase of the 0ω  spectral component of the 

-componentζ  of the original E-field at point P; z∆  is the 
longitudinal cell size at the port; t∆  is the discretization 
step in time; β  is a constant defined as 20 /h tβ µ= ∆ ∆ , 
where min( , , )h x y z∆ = ∆ ∆ ∆ ; 0 pJ  is the scaling factor 
determining the strength of the original excitation 
(usually set to 1).  

 
B. Sensitivity of a Response at a Point  

In open problems with a point excitation at point Q 
and a field observation at point P, there are no waveguide 
ports and the definition in equation (1) is simplified as 
follows: (i) the modal wave impedances are replaced by 
the intrinsic impedances PZ  and QZ  of the media at 
which point P and point Q are located; (ii) the incoming 
phasor qF  is replaced by the 0ω  spectral component QE  
of the incident field ( )QE t  at point Q, (iii) the outgoing 
phasor pqF  is replaced by the 0ω  spectral component 

PQE  of the observed scattered field ( )PQE t  at P. The 

response then becomes, 

Q PQ
PQ

P Q

Z E
F

Z E
= ⋅ .      (13) 

Here, the scalar scattered field response PQE  and the 
incident field response QE  are defined as, 

PQ PQ PE = ⋅E M        (14) 

Q Q QE = ⋅E M ,                           (15) 

where PQE  is the 0ω  spectral component of the scattered 
vector field ( )PQ tE  at point P when point Q is excited 
and QE  is the 0ω  spectral component of the incident 
vector field ( )Q tE  at point Q when point Q is excited. 

( )Q tE  is obtained through a reference simulation where 
point Q is excited in an infinite uniform medium of the 
same electrical properties as the medium at point Q and 
the field ( )Q tE  is recorded at the point of excitation. ξM  
( ,P Qξ = ) is the desired polarization vector  [14] at 
pointξ , which is a complex vector in general. 

The derivative of PQF  with respect to the nth 
parameter can be expressed as, 

1PQ Q PQ

n P nQ

F Z E
p Z pE

∂ ∂
= ⋅ ⋅

∂ ∂
           (16) 

where the derivative of PQE  is computed as that of pqF  
in the case of the S-parameters. The adjoint fields are 
derived as before. 

 
C. Sensitivity Formula 

The conventional sensitivity expressions rely on 
analytical derivatives of the system coefficients, i.e., the 
coefficients of the governing equations, with regard to the 
parameter of interest pn. However, on structured grids, as 
those used by finite-difference methods or transmission-
line methods, the system coefficients are not analytical 
functions of the structure’s shape parameters. 
Consequently, their derivatives are not available 
analytically. To deal with such cases, a second-order 
accurate sensitivity formula was proposed in [8-9], which 
is specifically developed for discrete parameter spaces. It 
allows the use of a stepwise perturbation of a shape 
parameter equal to that of the local cell size h∆ , i.e. 

np h∆ = ±∆ . Such a perturbation results in well defined 
changes in the system coefficients, which yield accurate 
results when used in the discrete sensitivity formula. 
Later, we discuss the possibility of using much larger cell 
sizes, which are multiples of h∆ .  
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In the case of the complex response pqF  in equation 
(4), the discrete sensitivity formula for the real and 
imaginary parts of its derivative is [7], 

max
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pq n q
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Here, the subscripts R and I denote the real and the 
imaginary part of a complex quantity, respectively, and 

n∆  denotes a stepwise change occurring in a system 
coefficient as a result of the perturbation np∆  of the nth 
parameter; Ω  is the computational volume; qE  is the 
original field solution of the nominal structure when port 
q is excited, and ,

ˆ( )p nR IE  are the field solutions of the 
adjoint problems in the nth perturbed state when port p is 
excited. Note that the adjoint field solutions for the real 
and the imaginary parts of the complex derivative are 
different and obtained from the original field solution Ep 
(when port p is excited) using equations (11) and (12)
Note also that the adjoint solutions must correspond to 
the nth perturbed state, i.e. the structure where pn is 
perturbed by the smallest on-grid perturbations. However, 
no actual simulations of the perturbed structures are 
performed since their respective field solutions are 
approximated by a simple mapping procedure [8], which 
involves a one-cell shift in the direction of the respective 
perturbations. These approximations use the available 
field solution of the unperturbed structure only. 

With a further regard to equation (18), the system 
coefficients α , β  and s  are, 

2
2 20

0,  ,  
2r

h h hs
c t t t

σµα ε β µ∆ ∆ ∆⎛ ⎞= = =⎜ ⎟∆ ∆ ∆⎝ ⎠
.       (19) 

They correspond to a central finite-difference 
discretization of the E-field vector wave equation. The 
operators ttD , 2tD  and tD  are respective second- and 
first-order finite-difference operators with respect to time. 

2C  is the FD double-curl operator of the E-field vector 
wave equation. Points, at which the expression (18) is 
non-zero, are referred to as perturbation grid points. 

In the case when the optimizable parameter np  is a 
material parameter, the derivatives of the system 
coefficients can be computed analytically. Also, 2n∆ C  

and ( )n tDβ∆ J  in equation (18) are equal to zero since 
the system coefficients 2C  and tDβ J  are independent of 
variations in the material parameters in the case of 
dielectric structures. Thus, equation (18) can be written in 
an analytical form as, 

2
( )q

tt q t q
n n n

dR d dsD D
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             (22) 

Also, in this case, there is no need for the mapping 
approximation of the adjoint fields. The adjoint solutions 
correspond to the unperturbed structure and ,

ˆ( )p nR IE  in 
equation (17) are replaced simply by ,

ˆ( )p R IE . 
Further details of the self-adjoint sensitivity 

computations are given in  [11] with regard to acquiring 
the excitation waveform, the incident-field waveform, 
and the de-embedding required in the case of S-parameter 
sensitivities. 
 

III. SENSITIVITY SOLVER GRID 
 

In our discrete self-adjoint sensitivity analysis 
method, the computational domain is discretized into 
rectangular cells as in a FD grid. Figure 1 illustrates the 
FD 2-D grid for a lossy dielectric rectangular object, 
which is modeled with constitutive parameters 2rε  
and 2σ . The host medium is modeled with 1rε  and 1σ . 
The vertical E-field component of a 2-D TM mode is 
computed at the nodes of the grid. In original approach 
[7, 10-11], the sensitivity solver adopts the grid of the 
FDTD simulation. In order to compute the response 
Jacobians, the field at all perturbation grid points is stored 
and post-processed. For example, if the response 
derivatives with respect to 2rε  and 2σ  are needed, the 
waveforms of all nodes marked with black dots in 
Fig.1(a) must be stored. 

The grid of the sensitivity solver can be independent 
of the simulation grid because it is nothing more than a 
discrete means of calculating the sensitivity integral 
equation (17). Note that the spatial discretization defined 
by the step size χ∆  can be many times larger than the 
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step size h∆  used by the FDTD simulation. While h∆  
relates to t∆  through the Courant stability condition, χ∆  
is limited only by the smoothness of the integrated field 
quantity in the perturbation region. We emphasize that a 
coarse grid for the sensitivity calculation does not imply 
in any way a possibility to use a coarse grid in the FDTD 
analysis. The accuracy of the sensitivity calculation 
depends crucially on the accuracy of the field solution 
and, therefore, the grid of the EM simulation must remain 
fine enough to ensure convergent numerical analysis. 

To illustrate the coarse sensitivity grid, three 
different grids are shown in Fig. 1(b): the black crosses 
are used for the case 2 hχ∆ = ∆ ; the red squares for 

4 hχ∆ = ∆ ; and the blue circles for 8 hχ∆ = ∆ . We note 
that the number of stored field waveforms decreases as 

33k  in a 3-D simulation and as 2k  in a 2-D simulation 
when the grid is made coarser by a factor /k hχ= ∆ ∆ .  

The coarse sensitivity-solver grid may be applied to 
shape parameters as well although the savings in memory 
are not as dramatic since perturbation grid points exist 

only at the object’s interfaces instead of its whole 
volume. For instance, when the response gradient with 
respect to w is computed, the nodes where the field is 
saved are shown in Figs. 2(a-b). The black dots in Fig. 
2(a) are the perturbation nodes for our original approach.    
Figure 2(b) shows the perturbation nodes for the three 
coarse grids: black crosses for 2 hχ∆ = ∆  (12 nodes), red 
squares for 4 hχ∆ = ∆  (6 nodes), and blue circles for 

8 hχ∆ = ∆  (3 nodes). 
Coarse grids are needed for computationally large 

objects, i.e., objects which are more than several h∆  in 
size, due to the excessive memory requirements. For 
computationally small objects, we suggest that the 
sensitivity solver adopts the simulation grid, i.e. 

hχ∆ = ±∆ . In the case of computationally large objects, 
we investigate the limits of the factor /k hχ= ∆ ∆ , below 
which the Jacobian computation is of acceptable 
accuracy. We consider 1-D, 2-D and 3-D examples and 
give recommendation. 

 
 

surrounding nodes
1 1( , )rε σ

geometrical detail
2 2( , )rε σ

(a) (b)
 

Fig. 1. Sensitivity solver grid: (a) the fine simulation grid; (b) the coarse sensitivity-analysis grids. 
 
 

1 1( , )rε σ
surrounding nodes

2 2( , )rε σ

(a) (b)

w

geometrical detail

 
Fig. 2. Sensitivity solver grid: (a) the fine simulation grid (b) the coarse sensitivity-analysis grids. 
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IV. NUMERICAL RESULTS AND DISCUSSION 
 

Our approach is verified through 1-D, 2-D and 3-D 
dielectric lossy inhomogeneous examples. We compute 
the S-parameter derivatives and the derivatives of a point-
wise response function with respect to both constitutive 
and shape parameters for electrically large and small 
objects. Field analyses are carried out in the time domain 
with the commercial FDTD-based solvers XFDTD  [12] 
and QW-3D  [13]. Mesh convergence is checked for all 
examples. The convergence error formula is, 

( 1) ( ) ( 1)/ , ,  ,  .k k ke E E E x y zζ ζ ζ ζ+ += − =        (23) 

Here, the superscripts denote two consecutive mesh 
sizes. ( 1)kEζ

+  and ( )kEζ  are the phasors of the field 
solutions for two consecutive mesh sizes at the highest 
frequency of interest. This error is usually monitored at 
the ports for S-parameter analysis or at the observation 
points P and Q.  

In all plots, the results obtained using the original 
approach of self-adjoint sensitivity analysis are marked as 
‘FDTD-SASA’. The results obtained using coarse-grid 
schemes of the self-adjoint sensitivity analysis are 
marked as ‘ k hχ∆ = ∆ ’, which means that the sensitivity-
solver grid is k times coarser than the FDTD grid. The 
results estimated using the forward, central and backward 
finite differences are marked as ‘FFD’, ‘CFD’ and 
‘BFD’, respectively. For shape parameter derivatives, the 
FD estimates use parameter perturbation of 1 h∆  unless 
specified otherwise in brackets in the plot’s legend. For 
material parameters derivatives, the amount of parameter 
perturbation is shown in brackets as a percentage of the 
nominal value. Where available, analytical results are 
marked as ‘Analytical’. All analyses are performed over a 
frequency range from 3.0 GHz to 5.0 GHz, which is the 
bandwidth of the excitation pulse. 

 
A. Parallel-Plate Waveguide with an Electrically Thick 
Layer 

We first illustrate the approach with a parallel-plate 
waveguide (see the insert in Fig. 3) with an electrically 
thick inhomogeneity (shown in shade). Both media are 
lossy. Uniform mesh ( 0.25h∆ = mm) is used in the 
FDTD simulation with a mesh convergence error less 
than 5 %. The excitation is a modulated Gaussian pulse. 
It has a uniform distribution across the port conforming to 
a TEM plane wave. 

The optimizable parameters 2 2[ , , ]T r wε σ=p  are the 
constitutive parameters of the central layer. Figure 3 
shows the derivative of 2

11S  with respect to 2σ . It is 

noted that the results obtained using all coarse schemes 
except the one using 20 hχ∆ = ∆ , which is the Nyquist 
limit at 5 GHz, show good agreement with the analytical, 
the FDTD-SASA and the CFD results. 

For electrically large objects in a 1-D problem, if the 
optimizable parameters are material parameters, we 
recommend to choose the step size of the sensitivity 
solver as min / 4χ λ∆ ≤  in order to maintain good 
accuracy. Here, minλ  is the minimum wavelength of 
interest in the medium of the optimized object. 

 

3 3.5 4 4.5 5

x 10
9

-1

-0.5

0

0.5

1

x 10
-3

frequency (Hz)

∂|S
11

|2 /∂
σ 2 (Ω

.m
)

 

 

FDTD-SASA
FFD (2 %)
CFD (4 %)
BFD (2 %)
∆χ = 2 ∆h
∆χ = 4 ∆h
∆χ = 8 ∆h
∆χ = 20 ∆h
Analytical

270 mm

10 mmw =

2.5 mm 1 6rε =2 30rε =
2 6σ = 1 0.2σ =

  
Fig. 3.  Derivative of 211| |S  with respect to 2σ  in the 1-D 
example with electrically thick layer. 
 

Figures 4 and 5 show the derivatives of the real and 
imaginary parts of 11S  with respect to the shape 
parameter w. It is observed that all curves obtained using 
coarse grids except the one with 2 hχ∆ = ∆  show 
substantial discrepancies in comparison with the FDTD-
SASA ( hχ∆ = ∆ ) as well as the FD curves. For 1-D 
problems, if the shape parameter is optimized, we 
recommend to choose the step size of the sensitivity 
solver as that of the simulation grid in order to maintain 
good accuracy. This is also because the memory 
requirements in this case are small. 

 
B. Parallel-Plate Waveguide with a Thin Layer 

A parallel-plate waveguide with an electrically thin 
central layer is shown in the insert of Fig. 6. Uniform 
mesh ( 0.125h∆ =  mm) with a mesh convergence error 
less than 4 % is used in the FDTD simulation. The 
excitation and the optimizable parameters are the same as 
in the first example. 

Figure 6 shows the derivative of the real part of 21S  
with respect to 2rε . It is observed that all curves obtained 
using different coarse-grid schemes are in good 
agreement. There is very small discrepancy between the 
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curves obtained using coarse grids and all the other 
curves. We conclude that for an electrically small object 
in a 1-D problem, the step size χ∆  of the sensitivity 
solver can be chosen as large as the size of the object 
when derivatives with respect to material parameters are 
computed.  
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Fig. 4.  Derivative of 11Re( )S  with respect to w in the 1-D       
example with electrically thick layer. 
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Fig. 5.  Derivative of 11Im( )S  with respect to w in the 1-D   
example with electrically thick layer. 

 
C. Electrically Large Object in a Lossy Medium 

Figure 7(a) shows a 2-D structure with an electrically 
large object immersed in a host medium. Both the host 
medium and the object are lossy. Uniform mesh 
( 0.25h∆ = mm) with a mesh convergence error below 4 
% is used. We use the same excitation waveform as in the 
above examples.  

The design parameters are 2 2[ , , ]T r wε σ=p . We use 
the normalized point-wise response function PQF  in 

equation (13). In Fig. 7(a), Q is the excitation point while 
P is the observation point. The sensitivity of | |QQF  with 
respect to 2rε  and the sensitivity of | |PQF  with respect to 
w are plotted in Fig. 8 and 9, respectively. We notice that 
the step size of sensitivity solver can be 8 times coarser 
than that of the FDTD simulation. A sensitivity-grid cell 
size of 16 hχ∆ = ∆  corresponds to the Nyquist limit at 5 
GHz for the medium of the obstacle and the respective 
curves show significant departure from all other results. 
For electrically large object in a 2-D problem, we 
recommend to choose the step size of the sensitivity 
solver as min / 4χ λ∆ ≤  in order to maintain good 
accuracy. 
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Fig. 6.  Derivative of 21Re( )S  with respect to 2rε  in the 
1-D example with electrically thin layer. 

 

D. Electrically Small Object in a Lossy Medium 
Figure 7(b) shows a 2-D structure with an electrically 

small inhomogeneity in a host medium. Both the host 
medium and the inhomogeneity are lossy. A uniform 
mesh ( 0.125h∆ =  mm) with a mesh convergence error 
below 3 % is used. The excitation, design parameters, and 
the response functions are the same as those in the 
example in subsection C. 

In Fig. 7(b), Q is the excitation point while P is the 
observation point. The sensitivities of | |PQF  with respect 
to 2σ  and w are plotted in Fig. 10 and 11, respectively. 
We notice that the step size of the sensitivity solver needs 
to be the same as the step size of the FDTD simulation in 
order to achieve good accuracy. For electrically small 
objects in 2-D problems, we recommend to choose the 
step size of the sensitivity solver as that of the FDTD 
simulation for both shape and material parameters in 
order to maintain good accuracy. 
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Fig. 8.  Derivative of | |QQF  with respect to 2rε  in the 2-D 
example with a large object. 
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Fig. 9.  Derivative of | |PQF  with respect to w in the 2-D 
example with a large object. 
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Fig. 10.  Derivative of | |PQF  with respect to 2σ  in the      
2-D example with a small object. 
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Fig. 11.  Derivative of | |PQF  with respect to w in the 2-D 
example with a small object. 
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E. 3-D Object in a Lossy Medium 
Figure 12 shows a 2-D cross-section of the 3-D 

structure and its parameters. The host medium and the 
immersed object are lossy. The host medium is a 
rectangular box with a corner at (0, 0, 0) mm. It extends 
40 mm along the x-axis and the z-axis, and 44 mm along 
the y-axis. The immersed object is a small rectangular 
object with a corner at (18, 15, 18) mm, and an extent of 
w = 4 mm along the x-axis, h = 4 mm along the y-axis 
and l = 4 mm along the z-axis. Uniform mesh ( 0.25h∆ =  
mm) with a mesh convergence error below 5 % is used. 

The design parameters are 2 2[ , , , , ]T r w h lε σ=p . The 
excitation and the response functions are the same as 
those of the example in subsection C. In Fig. 12, Q is the 
excitation point located at (15, 29, 17) mm while P is the 
observation point located at (25, 29, 17) mm. Figure 13 
shows the derivative of 2| |QQF  with respect to w. It is 
noted that all curves obtained using coarse grids except 
the one with 16 hχ∆ = ∆ , which approaches the Nyquist 
limit of the object medium at 5 GHz, have good 
agreement with the curves computed using our original 
self-adjoint approach. These curves are in close 
agreement, i.e., they are convergent. In contrast, the 
curves computed using response-level FDs are not 
convergent. Different shape parameter perturbations have 
been tried. The best FD estimates are shown here 
obtained with 2w h∆ = ∆ . 
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Fig. 12.  A 2-D cross-section of the 3-D example. 

 
Figure 14 shows the derivative of 2| |QQF  with 

respect to 2rε , where similar results are obtained. Figure 
15 shows the derivative of 2| |PQF  with respect to 2rε . 
All curves except the one with 16 hχ∆ = ∆  are in good 
agreement. We recommend that in a 3-D problem, the 
step size of the sensitivity solver is chosen as 

min / 4χ λ∆ ≤  for both material and shape parameters in 
order to maintain good accuracy. 
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Fig. 13.  Derivative of 2

QQF  with respect to w in the 3-D     
example. 
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Fig. 14.  Derivative of 2| |QQF  with respect to 2rε  in the  
3-D example. 
 

3 3.5 4 4.5 5

x 10
9

0

1

2

3

4

5

6

7

8
x 10

-12

frequency (Hz)

∂ |F
PQ

|2 /∂
ε r2

 

 
FDTD-SASA
FFD (20 %)
CFD (40 %)
BFD (20 %)
∆χ = 2 ∆h
∆χ = 4 ∆h
∆χ = 8 ∆h
∆χ = 16 ∆h

 
Fig. 15.  Derivative of 2| |PQF  with respect to 2rε  in the  
3-D example. 

13SONG, NIKOLOVA, BAKR: EFFICIENT TIME-DOMAIN SENSITIVITY ANALYSIS USING COURSE GRIDS



 

V. CONCLUSIONS 
 

We propose a coarse-grid approach for the efficient 
computation of response Jacobians using the self-adjoint 
sensitivity analysis method. The sensitivity-analysis grid 
can be many times coarser than the grid used by the EM 
simulation. We emphasize that the accuracy of the 
sensitivity result is dependent on the accuracy of the field 
solution and, therefore, the grid of the EM simulation 
must remain fine enough to ensure convergent solution. 
Yet, the sensitivity grid can be as coarse as a quarter 
wavelength for the highest frequency of interest. This is 
because it is nothing more than a discrete means of 
calculating the sensitivity integral. It is limited only by 
the requirement that the local field solution is a 
sufficiently smooth function of space at the given 
frequency.  

The coarse-grid approach reduces the memory 
requirements drastically. It is especially useful in the case 
of electrically large regions whose permittivity or 
conductivity distribution is being optimized, since the 
memory requirement of our original self-adjoint 
approach, which uses the FDTD simulation grid directly, 
may become excessive. The coarse-grid Jacobian 
computations are verified through 1-D, 2-D and 3-D 
examples. We find that they maintain very good accuracy 
as long as the step size of the sensitivity solver is below 
the Nyquist limit. Recommendations about the step size 
of the sensitivity solver are given for both electrically 
large and small objects. 

Our new grid scheme is independent of the 
simulation grid and is simple to implement. The approach 
can be realized as standalone software to compute 
response Jacobians, which can be used in gradient-based 
computer-aided design and inverse-problem solutions. 
Applications focus on lossy dielectric media as those 
used to model high-frequency problems arising in 
biomedical applications of microwave imaging.  
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