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Abstract −  The use of graphical processing units (GPU) 
has been recently documented for the implementation of 
the FDTD technique; however, little has been reported 
about the necessary additions to three dimensional FDTD 
codes to make the technique more useful for fast antenna 
analysis and design.  This paper details the addition of a 
convolutional perfectly matched layer absorbing 
boundary (CPML) to a three dimensional GPU 
accelerated FDTD code. 
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I. INTRODUCTION 
 

The use of a graphical processing unit (GPU) to 
accelerate the nested loops for updating the field of a 
three dimensional FDTD code has been documented in 
literature over the past few years [1-3].  What has been 
absent is the implementation of all the additional features 
of electromagnetic simulation that allow the FDTD 
technique to be so useful to the antenna engineer.  These 
features include, but are not limited to, a functioning 
absorbing boundary, a plane wave injection method, 
discrete feeds for driven antennas, sub-cell models, linear 
and non-linear circuit element models, and near to far-
field transformation for radar cross-section (RCS) and 
antenna pattern analysis.   The goal of this paper is to add 
the first item in the list, a PML absorbing boundary, to a 
GPU-accelerated code without giving up too much of the 
speed advantage provided by the use of the GPUs.  Since 
the convolutional PML [4] relies on the same triple-
nested loops as the standard 3D FDTD, as well as having 
several other benefits [5], it seemed to be a promising 
candidate to implement in a GPU FDTD code. This paper 
addresses the benefits of implementing the CPML in a 3D 
FDTD code executed on a GPU. The details of how to 
construct a GPU FDTD code is not within the scope of 
this paper as this can be found in [1-3]. 

II. CPML FORMULATION 
 

The CPML formulation was chosen both for its 
simplicity, as well as the straightforward nature of its 
implementation [5].  Both the standard PML [6] and its 
Uniaxial [7] formulation require the PML region to be 
updated separately from the rest of the computational 
domain.  These formulations also possess a two-step 
update procedure and a complicated set of coefficients to 
allow general materials to be present in the PML region.  
The CFS-PML is favorable due to the fact that all cells in 
the PML are updated in the normal FDTD loop, so all 
general materials are handled.  After the normal loop of 
updating the field components, the convolutional term is 
added to the appropriate fields for each face that has PML 
present on it.  This is also a two step process, but the first 
step is simply the normal FDTD update process.    

For the sake of completeness, this section will detail 
the formulation of CPML used in the GPU accelerated 
code described in this paper.  The derivations for all 
equations, as well as a much better descriptions of both 
the CFS-PML and the CPML, are given in [8].   The first 
step in building the CPML is to set the field updating 
coefficients correctly.  The coefficients are scaled 
spatially from the edge of the computational domain.  All 
of the following equations describe a CPML that 
attenuates waves traveling toward the lower z boundary.  
The two important terms are the complex frequency 
shifted term, a, and the PML conductivity term, σ which 
are given as, 
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In equations (1) and (2), u is the integer representing 
the location from the lower z boundary, and iPML is the 
number of PML cells (which is set to 10 for the results 
presented here). The term m is the order of the 
polynomial taper, which was set to 4. The polynomial 
tapers are applied to a maximum values for a and σ, 
which are defined as, 
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Equation (3) is taken directly from [7], while 

equation (4) is chosen as a good fit for most problems. 
The Fo term is the center frequency of the excitation 
pulse in the frequency domain. For this case, a derivative 
of a Gaussian is used as the source waveform. The 
spatially scaled terms are then used to create the bz and cz 
coefficients such that, 
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As mentioned previously, all cells in the 

computational domain, the PML cells included, are 
updated with the standard FDTD update equations. For 
the lower z boundary example, the Ex and Ey terms are 
then modified by a convolutional “correction” term to 
apply the PML. These terms are given in equations (7) 
and (8). They are then added into the Ex and Ey terms as 
given in equations (9) and (10). The CEXH term in 
equations (9) is the usual magnetic coefficient for the Ex 
update equation. Likewise for the CEYH term in 
equations (10). These terms are defined in equations (11) 
and (12) as a function of the permittivity and conductivity 
of the material at individual points and are separated by 
direction, 
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The magnetic CPML update process proceeds 

similarly. The one difference that should be noted is that 
the spatially scaled coefficients are shifted by the usual ½ 
cell characteristic of the Yee cell [9]. The update 
equations for the magnetic field are given by, 
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III. GPU IMPLEMENTATION OF THE CPML 
 

Efficient implementations of basic FDTD technique 
on GPU’s have been documented in the past, however, 
including absorbing boundary conditions can present a 
few challenges. Certain common boundary types such as 
Mur or Liao may not have easy implementation due to 
the nature of the time and spatial dependency of their 
updating equations, especially for higher orders absorbing 
boundaries. Furthermore, this problem gets to be more 
complicated for three dimensional problems where the 
3D to 2D translation [3] is necessary for storage inside 
the GPU card as seen in Fig. 1. Because of this 
translation, the various x, y, and z boundaries inside the 
domain are scattered amongst the various tiles. Thus 
applying the boundary conditions on the individual 
boundaries becomes very complicated. 

On the contrary, the CMPL boundary condition can 
be implemented with a much easier procedure since 

CPML can be represented by FDTD-like arrays. In most 
efficient C and FORTRAN implementations of CPML, 
the coefficients (ψ, b, c) and the processing loops operate 
only on the boundary locations, however since the 
coefficients in non-boundary areas would be zero, the 
coefficients and processing loops can be extended to 
cover the entire domain. While unnecessary in C and 
FORTRAN implementations, this becomes necessary in 
the GPU code as the boundaries are scattered throughout 
the 2D translated arrays. This allows for a much simpler 
updating function as it can be applied over the entire 
domain without having to worry in the GPU section 
where exactly the boundary locations are. Figure 2 shows 
the location of the various boundaries once the 3D 
domain has been decomposed into a 2D tiled domain. 
The program will calculate and populate the various 
coefficients necessary to implement the CPML boundary 
in these regions only. 

 

Fig. 1. 3D to 2D translation via tiling. 

Fig. 2. Locations of the boundaries in the 2D texture. 
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The updating equations were implemented in GPU 
kernels as simple functions that would first calculate the 
necessary ψ terms, then apply the correcting terms to the 
E and H field components. The entire process is 
integrated easily into the GPU program with only minor 
changes in the precalculation of the b and c terms before 
the GPU performs the time steps. 
 

IV. RESULTS 
 

The GPU program was tested against a known 
FORTRAN based FDTD code with CPML to insure 
accuracy and proper operation. Both the GPU and CPU 
based codes were run on Intel Dual-Core 2.8 GHz 
systems with an Nvidia 8800 GTX video card with 768M 
of RAM. In the progression of time steps a derivative of a 
Gaussian waveform is injected from a point source at the 
center of the domain and progresses outward before being 
absorbed by the CPML layers and finally only very small 
reflections of the CPML remains. The source waveform 
is defined as, 
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Figure 3 shows the Ez field component at a plane cut 

containing the source point for various time steps to show 
proper operation of the GPU based program. 

Figure 4 shows the Ez field component at an 
observation point 10 cells from the source point over 500 
time steps. The wave is injected from approximately 40 
to 150 time steps while the reflection of the CPML 
boundary can be seen at approximately 225 time steps 
into the simulation. The maximum magnitude of this 
reflection was calculated to be less than 0.3%. This 
reflection is higher than standard FORTRAN codes due 
to the numerical precision of the GPU. 

With the PML having been verified, several test 
cases were run to present the full functionality and verify 
real simulation results. The two cases presented here are 
the well known microstrip patch antenna and filter [10]. 
Figure 5 shows the layout for the simple microstrip patch 
antenna. 

The patch was simulated on both the GPU and CPU 
based systems for 3000 time steps. Figure 6 shows both 
the time domain and frequency domain results. The 

results show good comparison overall to the reference 
data [10] with minor difference due to the actual 
implementation of the codes and the numerical precision 
of the GPU. 
 

 
 

 
 

 
 
Fig. 3. Ez plane cuts at various time steps.  
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Fig. 4. The Ez field component at the observation point 
over 500 time steps. 
 

The second test case simulates a microstrip filter. 
The simulation was also run on the GPU systems for 
3000 time steps. Figure 7 shows the layout of the simple 
microstrip filter while Fig. 8 shows the results from this 
filter. Again good agreement is shown between the GPU 
results and the reference data [10].  
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Fig. 5. Layout for patch antenna. 
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Fig. 6. Patch antenna verification results. 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
Fig. 7. Microstrip filter layout. 
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Fig. 8. Microstrip filter results. 
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Fig. 9. Fortran CMPL vs. GPU CPML implementation 
results for various time steps with 500000 cell 
configuration, (a) run time; (b) speed up factor. 
 

Figure 9 shows runtime and speedup results for both 
an optimized CPU and GPU code for the patch antenna 
test configuration of approximately 500000 cells. The 
GPU code was run on both an ATI x1900 and NVidia 
8800 GPUs, while the CPU code was run on a Dual Core 

Pentium 2.8 GHz processor. The runtime results show a 
near linear trend for this case as the number of time steps 
is increased. The speedup factors for this case show that 
as the number of time steps is increased the maximum 
speedup factor asymptotically approaches a limit of 26 
for the GPU on the NVidia 8800 and 6.4 for the ATI 
x1900. 

 
V. CONCLUSIONS 

 
The GPU based code outlined in this paper has 

shown good performance compared to a known 
FORTRAN code in implementing a three dimensional 
FDTD simulation with a CPML boundary condition. 
While the speedup factors gained in this GPU code is less 
than that has been shown without a boundary condition, it 
still offers a significant gain in speed over purely CPU 
based FDTD solvers. As the domain size is increased, the 
speedup factor slightly decreases due to the fact that the 
CPML coefficients and updates has to be implemented 
over the entire domain rather than in sections as it is in 
the FORTRAN code. It is expected that the current 
implementation would yield higher speed factor when 
new generation of GPUs are used.  
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