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Abstract − This paper presents a method to generate 
circuit models from 3D distributed structures. In the first 
step a broadband characterization of the device is 
obtained through a reduced order modeling technique. 
Then in the second step a rational approximation of the 
coefficients of the impedance matrix is derived using a 
root mean squared procedure. An equivalent circuit is 
then synthesized and allows a global circuit simulation of 
the whole structure. The proposed methodology can be 
used with a segmentation technique for the analysis of 
complex structures: a whole 3D structure can be 
subdivided into smaller parts. Each part is characterized 
by an equivalent circuit deduced from wideband analysis. 
The connection between the substructures makes 
available a global simulation of the whole system inside a 
circuit platform (SPICE for example). Numerical results 
are shown for different kinds of interconnects (tracks and 
cables). 
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I. INTRODUCTION 

 
With the increasing use of on-board electronic 

equipment, mastering Electromagnetic Compatibility 
(EMC) compliance at early design stage is becoming a 
crucial technical issue for the automotive industry. 
Computer simulation of the EMC properties of electronic 
devices is a promising way to make EMC design faster 
and cost-effective, since it can be applied to the virtual 
product before fabrication. 

In complex equipments involving interconnecting 
wires and electronic components a complete 
understanding requires a global analysis studying both 
electromagnetic modelling (for distributed parts) and 
circuit simulation (for lumped components). For a 
reliable simulation at the sub-system or system level 
efficient techniques are needed to address a hybrid field-
circuit analysis. For a time domain analysis a strong 
coupling between a field solver in the time domain and a 

circuit simulator leads to a heavy process updating at 
each time step both the field quantities and the circuit 
values [1].  

 An efficient solution for transient analysis is to 
extract lumped circuit parameters from broadband field 
computation. Circuit extraction is a well known 
procedure in case of high speed interconnects [2]. 
Equivalent circuits or circuit macromodels can be easily 
derived from a rational approximation of the frequency 
response of the structure [2, 3]. In case of conducting 
cables an adequate modelling technique is usually 
achieved in the frame of the transmission line theory. 
However such approach does not remain valid because of 
the increase of the frequency range involved in EMC 
analysis. In [4] a technique based on a full wave integral 
approach has been developed and applied to unshielded 
cables.  

The main computational cost relevant to circuit 
extraction techniques is the broadband full wave analysis. 
In order to minimize this computational cost a Padé 
approximation procedure provides an efficient way [5]. 
However such an approach requires getting the solution 
for a set of frequencies distributed over the whole 
frequency band. The results may be sensitive to the 
choice of the sample frequencies. A much more powerful 
approach is reduced order modelling: instead of solving 
the field problem, the equations characterizing the device 
are first brought to the state space form of the linear 
system and the system is reduced by appropriate 
algebraic transformation.  

 In recent years many reduced-order modelling 
(ROM) techniques have been studied [6-9]. In [9] a 
Laguerre SVD (Singular Value Decomposition) 
algorithm was shown to provide an efficient ROM 
technique. The capabilities of the approach were 
demonstrated in the case of linear systems resulting from 
the telegrapher equations or from the PEEC (Partial 
Element Equivalent Circuit) method. In our work we 
show that such a technique can be efficiently used in 
connection with a 3D finite element approach. With such 
an approach the impedance of distributed structures can 
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be easily obtained over a broadband. Then circuit models 
are deduced using a root mean square procedure and can 
be directly incorporated into a circuit simulator if 
required.  

 
II. REDUCED-ORDER MODELING 

 
Consider an electromagnetic problem involving one 

excitation port. From a 3D edge finite element approach 
the metrical system governing the vector of unknowns 
e(t) is given by [10], 
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where Mm is the mass matrix, Md is the damping matrix, 
Ms is the stiffness matrix, L is a selector matrix, u(t) is 
the excitation and y(t) is the output of interest. 
In the Laplace domain with zero initial condition the 
transfer function H(s), Y(s) = H(s)U(s) is given by, 
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the second-order system can be reformulated as a first-
order linear system of order N, 
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Consequently from equation (3) the transfer function can 
be written as, 
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The aim of model order reduction is to replace the 
mathematical model (equation (4)) by a model which is 
much smaller but keeps the same behaviour over a given 
frequency band. In other words the purpose is to find a 
system governed by a reduced state space form, 
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where the dimension q of the reduced matrices Cr, Gr, 
and Br verifies q << N. 
The new transfer function Hr is, 
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The ROM technique used in this work has been described 
in [9]. It is based on a system description in terms of 
orthonormal Laguerre functions. It uses the singular value 
decomposition and Arnoldi algorithm. To illustrate, the 
efficiency of this ROM technique is demonstrated in the 
case of the loop antenna shown in Fig. 1. The variation of 
the impedance computed with the reduced order method 
is compared to Fig. 2 with a standard 3D finite          
element method for two different orders                          
(q = 7, and q = 10). It is shown that for q = 10 an 
excellent agreement is obtained over the entire frequency 
band. 

 
Fig. 1. Loop antenna. 
 

 
Fig. 2. Comparison between ROM technique and 
standard 3D finite element method.   

 
III. CIRCUIT MODELS 

 
      Once the impedances of distributed structures are 
known over a given frequency band, an approximate 
expression based on rational functions can be determined. 
For a lossless transmission line of length l, the 
coefficients of the two port impedance matrix are known 
analytically [11], 
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where 
C
LZc =  is the characteristic impedance          

and LCl=τ . 
 
These coefficients can be expressed as Fourier series, 
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where  
τ
πω0 = . 

 
Since the structures studied in this work behave like 

transmission lines, a rather natural rational approximation 
of this impedance uses second order rational functions 
with real coefficients. It is determined via a least mean 
squared procedure. The whole band is divided into Nb 
sub-intervals where Nb is the number of resonant 
frequencies. For example, the value of Z11 is searched as, 
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Each second order rational function corresponds to 

an electrical circuit constituted with an inductance L with 
resistive loss (corresponding to a resistance R1) in parallel 
with a capacitance C with a leakage conductance             
G = 1/R2  shown in Fig. 3. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Equivalent circuit for a second order rational 
function. 
 

IV. CONDUCTING CABLES 
 

Figure 4 shows a perfectly conducting cable above a 
ground plane. The load is 50 Ω. The ground plane is a 

perfect conductor. Figure 5 shows the 3D finite element 
computation over the whole band and the corresponding 
rational approximation. This approximated impedance is 
built using a sum of 4 second order rational functions. 
Each rational function corresponds to a resonance peak. 
The distances between the different peaks characterize 
the resonances of the transmission line. A reasonable 
agreement between the finite element based approach and 
the approximation is obtained. 
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where the coefficients are given in Table 1. 

 
Table 1. Coefficients of the rational approximation. 

 

 i k
ib  

k
ia  

0 -3.14 1 
1 -1.56e+02 -5.21e-02 k = 1
2  2.02  
0 -2.19  1 
1 4.33e+01 3.54e-02 k = 2
2  5.09e-01 
0 -3.52e-01 1 
1 -1.74e+01 -1.80e-02 k = 3
2  2.20e-01 
0 -3.75 1 
1 9.48 1.88e-02 k = 4
2  1.27e-01 

 
 

 
 
Fig. 4. Cable of diameter 1 mm above the ground plane. 
 

Figure 6 shows a more complicated case: the cable is 
50 cm long and the height is not constant. The 
corresponding numerical results for the full wave 
computation and the approximation are shown on Fig. 7. 
The coefficients are given in Table 2. The rational series 
can be directly incorporated into a circuit simulator like 
SPICE for example and can provide an efficient time 
domain simulation of the signal propagating along the 
transmission lines. 
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a) Magnitude of the impedance. 

 

 
b) Phase of the impedance. 

 
Fig. 5. Comparison between direct 3D FEM computations 
(solid line) and rational approximation (dashed line). 

 
 

 
Fig. 6. Cable of diameter 1 mm above the ground plane. 

Table 2. Coefficients of the rational approximation. 
 

 i k
ib  

k
ia  

0 -1.89e+01 1 
1 4.31e+02 5.52e-03 k = 1 
2  1.84e+01 
0 -5.00 1 
1 4.58e+01 2.32e-01 k = 2 
2  3.75 
0 -5.38 1 
1 2.20e+01 4.62e-02 k = 3 
2  1.41 
0 2.62 1 
1 1.79e+01 2.11e-02 k = 4 
2  7.94e-01 

 

 
          a) Magnitude of the impedance. 

 

 
b) Phase of the impedance. 
 

Fig. 7. Comparison between direct 3D FEM computation 
(solid line) and rational approximation (dashed line). 
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V. TRACKS ETCHED ON PRINTED CIRCUIT 
BOARDS 

 
The loop antenna studied in Section I is associated 

with a section of a multi-conductor transmission line 
etched on the same substrate (Fig. 8). The characteristic 
impedance of the transmission line can be evaluated 
through a 2D cross-section analysis. So a global 
impedance of the whole structure (loop antenna + 
transmission line) can be determined at the input of the 
transmission line according to the rules of the 
transmission line theory. An approximate analytical 
expansion of including only two rational functions is also 
evaluated. A good agreement is obtained between the 
SPICE rational result and the two kinds of analytical 
solutions (Fig. 9). These solutions are compared to the 
whole 3D computation: it is worth noting that the SPICE 
result is closed to the global impedance deduced from the 
full wave 3D code ASERIS-BE (from EADS). This can 
be explained by the fact that the electromagnetic coupling 
between the loop antenna and the transmission line is 
weak in this case: the global behaviour of the structure 
roughly follows the theory of the transmission lines. This 
electromagnetic coupling is significant in the low 
frequency range: the global structure does not behave like 
a transmission line and a macromodelling SPICE 
simulation is no longer available in this range. 

 This methodology could provide an efficient way to 
simulate how conducted emissions can be induced along 
systems of transmissions lines by a perturbating 
electromagnetic field. The whole 3D transmission line 
system can be divided into sub-structures. Each part can 
be separately handled and the corresponding equivalent 
SPICE circuit can be deduced. As shown in the example 
above, in the high frequency case, all the parts can be 
connected together making available a global circuit 
model. So, provided that the spectrum of the illuminating 
exciting source is in a high frequency range, a SPICE 
simulation will allow giving how a conducted 
interference will be carried by the system of transmission 
lines. 

 
 

a)  Loop antenna. 

 
 
b) Transmission line. 

 
Fig.  8. Global 3D structure. 
 
 

 
 
Fig. 9. Global impedance obtained with full wave 
computation, SPICE, and analytical expressions. 

 
VI. CONCLUSION 

 
A macromodelling approach was presented for EMC 

analysis of interconnected systems in the field of 
electromagnetic compatibility. In the methodology a 
broad-band characterization of distributed structures is 
performed with a finite element based approach. Then 
circuit models are deduced using a root mean square 
procedure. These circuit macromodels, SPICE compatible 
for example, provide a straightforward technique to 
simulate the propagation of parasitic signals along tracks 
and/or transmission lines. The procedure can be 
efficiently used in the simulation of time domain 
reflectometry for cable diagnosis. 
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