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Abstract − This paper is in the framework of the non-
destructive evaluation of conductive materials by means 
of eddy current testing. In particular, we consider the 
imaging of surface breaking volumetric defects. In this 
case, it is possible to use relatively “high-frequencies” 
and, in the limit of skin-depth negligible with respect to 
the relevant geometrical sizes and negligible 
displacement current, the problem can be modeled as a 
magnetostatic one. The elliptic nature of magnetostatic 
allows proving a monotonicity property of the operator 
mapping the defects geometry into the measured quantity. 
This makes possible to use a recently proposed fast (non-
iterative) imaging algorithm. 
 
Keywords: Non-destructive testing, eddy current testing, 
inverse problem, and fast imaging algorithms. 
 

I. INTRODUCTION 
 

The solution of the inverse problem in a non 
destructive evaluation test based on eddy currents is 
usually formalized as the minimization of an error 
functional with respect to a given set of unknowns 
describing the features of the anomaly affecting the 
specimen under test. The evaluation of the error 
functional, relating the measurements to the computed 
data, requires the solution of the forward problem 
(compute the measurements for given anomalies) that 
should be repeated many times in the minimization 
procedure. Moreover the presence of local minima is a 
critical issue penalizing many local minimization 
algorithms. Recently a non-iterative method solving the 
inverse problem has been proposed for estimating a 
resistivity distribution approximated by a number of 
voxels [1-4]. The data consists of measurements of the 
impedance matrix at several frequencies acquired using a 
coil array. The method is based on a monotonicity 

property of the operator mapping the defects geometry 
into the measurements. However, in the approach adopted 
so far, the monotonicity has been achieved for the real 
part of the impedance matrix in the low frequency limit 
when the skin depth is larger than the relevant sizes of the 
problem. The evaluation of the impedance in this limit is 
a very difficult issue since the signal at low frequency is 
relatively weak and presence of noise can “destroy” the 
monotonicity property. 

In this paper we prove the monotonicity property of 
the operator mapping the defects geometry into the 
measured quantity, in the high frequency limit. In this 
case the forward problem can be conveniently 
approximated by a magnetostatic equivalent model, 
thanks to the skin effect that imposes a vanishing field 
inside the specimen (and a vanishing normal component 
of the magnetic flux density on its surface). In this limit 
we can solve the inverse problem leading to the imaging 
of surface defects on a conductive specimen, in a non 
iterative way. 

The paper is organized as follows: in Section 2 the 
mathematical model is described, in Section 3 the 
monotonicity is proved and in Section 4 numerical 
examples, aimed to verify the monotonicity and to show 
the performance of the inversion algorithm, are presented. 
 

II. MATHEMATICAL MODEL 
 

Let us consider a measurement system consisting of 
an array of several coils eventually mounted on a 
magnetic support that we assume to be linear (Fig. 1). 
The measured quantity is the impedance matrix (self and 
mutual impedances between coils) at the angular 
frequency ω. Under the assumption of negligible 
displacement current, the mathematical model is that of 
eddy current, eventually in the presence of magnetic 
materials. The mathematical model is, therefore, 
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together with proper continuity conditions on material 
interfaces and regularity conditions at infinity. In 
equation (1) Vc is the conducting domain, E and H are the 
electric and magnetic fields, respectively, σ is the 
electrical conductivity (J(r) = σ(r) E(r) in Vc, J is the 
induced current density), µ is the magnetic permeability 
(B(r) = µ(r) H(r) in IR3, where B the magnetic flux 
density) and Js is the prescribed source current density, 
that is the current density due to the currents circulating 
in the excitation coils. In addition, we assume the 
conductor to be non-magnetic. 
 

. . ... .. ..

 
Fig. 1. A conductor is probed by an array of three coils. A 
surface breaking volumetric defect is present. The 
measured quantity is the impedance matrix (in this case a 
3×3 symmetric matrix). 
 

If the frequency is high enough so that the skin-depth 
is negligible with respect to the typical dimensions of the 
conductor, the fields vanish inside the conducting domain 
Vc. As long as the displacement current is negligible, the 
magnetic field outside the conductor satisfies a 
magnetostatic problem in the free space with the 
boundary condition 0ˆ =⋅ nB  on ∂Vc, 
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Moreover, in this regime (negligible skin-depth and 

displacement current) the linked flux with the excitation 
coils approaches the linked flux for the magnetostatic 
problem of equation (2). Therefore, the impedance matrix 
approaches

cV
Ljω , being 

cV
L  the magnetostatic 

inductance matrix relating currents and linked fluxes in 

the excitation coils, iL
cV

=ϕ  where ϕ  is the column 

vector of the linked fluxes and i is the column vector of 
the currents circulating in the coils. The mapping 

cVc LV →⊂ 3IR defines an operator hereafter termed Π. 

 
III. MONOTONICITY 

 
In this section we prove the following (monotonicity) 

property of the operator Π, 
 

ΩΞ
≤⇒⊂Ξ⊆Ω LL3IR                (3) 

 
where 

Ω
L  (

Ξ
L ) is the (magnetostatic) inductance matrix 

following from equation (2) for Vc=Ω (Vc=Ξ) and 

ΩΞ
≤ LL  means that the matrix 

ΩΞ
− LL  is negative 

semi-definite. To prove equation (3), we first notice that 
the solution of equation (2) can be conveniently 
expressed in variational form (see [5] for instance) as, 
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It is worth noting that if a is solution of equation (4), then 

 

( ) ∫ ×∇−=Ψ −

3IR

21 d
2
1 Vaa µ ,  (7) 

 
and the inductance matrix 

cV
L  can also be defined 

through the magnetostatic energy, 
 

( )aa Ψ−=×∇= ∫ −

3IR

21 d
2
1

2
1 ViLi

cV
T µ .       (8) 

 
The proof of equation (3) easily follows from the 
variational principle equation (4) and from 

( ) ( )Ω⊆Ξ⇒Ξ⊆Ω AA . 
Let us assume that Ξ⊆Ω , then ( ) ( )Ω⊆Ξ AA  and, 
therefore, from equation (4) it follows that 

( ) ( )ΞΩ Ψ≤Ψ aa  where Ωa  and Ξa  are the solutions of 
equation (4) for Vc=Ω and Vc=Ξ, respectively. From 
equation (8) it follows, 
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that, from the arbitrariness of the coils current vector i, is 
equivalent to equation (3). 

Monotonicity of equation (3) allows identifying 
volumetric anomalies by the fast and efficient imaging 
algorithm described in [1-4]. Here we sketch the main 
idea underlying the imaging algorithm. Let V be an 
unknown anomaly present in Vc and let Vk a test anomaly 
placed in a known position. If Vk⊆V then Vc\V⊆Vc\Vk and 

VVVV ckc
LL \\ ≤ . Therefore, if VVVV ckc

LL \\ ≤  is false, then 

Vk is not contained in V. The test can be repeated for Vk 
taken in many different positions covering the “tentative 
region” where the anomaly is supposed to be present. In 
practice, VVc

L \  is a measured quantity whereas 
kc VVL \  is 

computed numerically. 
 

IV. NUMERICAL EXAMPLES 
 
IV.I Monotonicity: Numerical Validation 

In this section we validate numerically monotonicity 
of equation (3) by means of simple canonical numerical 
examples. The test geometry consists of a conductive 
half-space (conductivity 5.88⋅108 S/m, copper) where 
several type of volumetric defects are considered. The 
numerical model consists of an edge-element based 
integral formulation where the unknown is the induced 
current density represented as the curl of the electric 
vector potential [6]. The height of the anomalies is 
0.5mm, whereas their cross section is union of 
0.33mm×0.33mm elements. The skin-depth can be 
retained negligible if significantly smaller than 0.5mm. 
For copper (conductivity 5.88⋅108 S/m) this is the case for 
frequencies greater than 172kHz (the skin-depth in 
copper at 172kHz is 0.05mm). It is worth noting that, in 
typical eddy current testing configurations, the 
displacement current is negligible up to few MHz, 
depending on the particular setting. From the numerical 
perspective, in these conditions, the unknown current 
density flows in a thin superficial layer mainly beneath 
the array of coils. Therefore, the finite element 
discretization has been limited to this superficial layer 
only (Fig. 2). 

Figure 3 shows the different surface breaking test 
“anomalies” used to validate equation (3). Let Vc be the 
region (the half-space) occupied by the defect-free 
conductor and let V1, V2, V3 and V4 be the volumes 
occupied by the four different anomalies. To validate the 
monotonicity, we have carried out two different tests. In 
the first case we selected ordered pairs of anomalies (Vi, 
Vj) where the first anomaly Vi contains the second 
anomaly Vj (for instance, (V1, V2), (V1, V3) and (V1, V4)). 
Thus, from equation (3) we expect all eigenvalues of the 

difference 
jcic VVVV LL \\ −  to be positive. This is clearly 

the case as shown in Table 1 where is reported the sign 
index of 

jcic VVVV LL \\ − , defined as, 

 

( )
∑
∑=−

k k

k k
VVVV jcic

LLs
λ
λ

\\           (10) 

 
kλ  being the k-th eigenvalues of the matrix 

jcic VVVV LL \\ − , for different test cases. It is worth 

noting that the sign index is equal to +1 ( −1) if 

jcic VVVV
LL

\\
−  is positive (negative) semi-definite and it 

assumes values in the open interval ( −1, +1) when 

jcic VVVV LL \\ −  has eigenvalues with different sign. 

 
(a) 

 

 
(b) 

 
Fig. 2. (a) The finite element discretization together with 
the array made by 3×3 coils. The discretization is limited 
to a 0.05mm superficial layer. (b) The real (dominant) 
part of the induced eddy current density at 172kHz (skin-
depth equal to 0.05mm) in the presence of a surface 
breaking volumetric anomaly. Only one coil is energized. 
 

In the second test we have selected ordered pairs of 
anomalies (Vi, Vj) where Vi is not contained in Vj and vice 
versa (for instance (V2, V3), (V2, V4) and (V3, V4) ). In this 
case (see Table 1) we are no longer guaranteed that 
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jcic VVVV LL \\ −  must be either a positive or negative 

semi-definite matrix. 
 
Table 1. Sign index for different configurations. 
The element ij is the sign index for matrix 

jcic VVVV LL \\ −  

 
 V1 V2 V3 V4

V1 - 1 1 1
V2 -1 - 0.861 0.879
V3 -1 -0.861 - 0.426
V4 -1 -0.879 -0.426 -

 

 
(a) 

 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 
Fig. 3. (a) 2D (top) view of four different test anomalies 
having the same depth. (b) The corresponding 3D view 
(not in scale) consisting of only a thin superficial layer at 
the air-conductor interface (thickness 0.05mm right 
beneath the array of coils). 

 
IV.II Monotonicity: Imaging Method 

Here we apply the monotonicity to solve the inverse 
problem. The test configuration is similar to the one 
described in section 4.1. The region of interest is 
36mm×36mm and it is subdivided into a 72×72 regular 
grid of test anomalies. From the computational viewpoint, 

each test anomaly is discretized using 2×2 elements in the 
transverse direction (see Fig. 4). 

The probe is an array made by 23 coils arranged in 
the closest packed array configuration (see Fig. 4). Each 
coil has the inner radius of 0.3 mm, the outer radius of 
0.6mm and the height of 6mm. The lift-off between the 
specimen and the probe is 2mm. In this test example we 
assume that each coil is made by one turn. The results can 
be easily scaled in case of coils made by an arbitrary 
number of turns. 

To evaluate the visible region, i.e. the area 
“illuminated” by the probe, we computed the spatial 
distribution of the norm of 

cjc VVV
LL −

\
 where the 

subscript j refers to the jth test anomaly. Higher values of 
this norm are related to the visible region. From Fig. 4, it 
results that the visible region is made by 12×12 test 
anomalies, corresponding to a 6mm×6mm area. It is 
worth noting that the spatial map of the norm of 

cjc VVV
LL −

\
 can be related to the order of magnitude of 

the maximum amount of measurement noise that does not 
“destroy” the reconstruction. 

Since the scanned area (36mm×36mm) is larger than 
the visible region, the probe is placed at different 
locations. Specifically, the probe is moved onto a regular 
8×8 grid corresponding to the intersections of the 
orthogonal lines in Fig. 5. The orthogonal lines subdivide 
the scanned area in 9×9 blocks; each block consists of 
8×8 pixels (test anomalies). For a given pixel j (test 
anomaly j) in a block B, we compute the sign index, 

 
( )k

VV
k
Meas jc

LLs
\

−    (11) 

 
related to the measurements when the probe is placed at 
the four corner of the block (k=1,..,4). In equation (11) 

k
Meas

L  and k
VV jc

L
\

 are the (noisy) measured inductance 

matrix and the numerically computed inductance matrix 
related to pixel j, respectively (in both cases the probe is 
located in the kth corner of the block B). Then, we 
associate to pixel j the quantity sj that is the maximum of 
the four sign indices arising from the corners of block B. 

In the absence of noise, when Vj is contained in the 
unknown anomaly V, we have sj =1, as discussed in 
Sections 3 and 4.1 (lower values are obtained in the 
presence of noise). Finally, we compute the 
map ( )jj ss −= 1/1ˆ . This last map provides a qualitative 
image of the defects (see Fig. 5) [1]. To obtain a 
quantitative reconstruction, we apply a threshold to the 
spatial map jŝ  (see Fig. 6). We found numerically that 
proper threshold values are those related to large gaps or 
local minima of the histogram of the values assumed 
by jŝ . 
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(a) 

 

 
(b) 

 
Fig. 4. (a) The array (view from the top) with a portion of 
the finite element mesh used during the computations. 
Each element has a transverse dimension of 0.25mm and 
each test anomaly consists of 2×2 elements in the 
transverse direction. (b) The array together with the 
spatial distribution of the norm of

cjc VVV
LL −

\
. The 

visible region is made by 12×12 pixels. 
 

 
(a) 

 
(b) 

 
Fig. 5. (a) The distribution of the anomalies (white) 
together with the array and the grid use to place the array 
in different positions. (b) The (normalized) spatial maps 
of the jŝ ’s. 
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(b) 

 
Fig. 6. (a) : the reconstructed map of anomalies obtained 
by applying a threshold of 0.54 to the spatial distribution 
of the jŝ ’s. (b) : the histogram of the spatial distribution 

of the jŝ ’s. 
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Finally, we mention that the measurements (matrices 
k

Meas
L ) have been numerically computed and corrupted 
with an additive noise uniformly distributed in the range   
(-ε,ε) where ε is 11% of the minimum norm of 

cjc VVV
LL −

\
 in the visible region. 

 
IV.III Noise and Resolution 

Although this is beyond the scope of this work, in 
this subsection we present some considerations about 
noise and resolution in the framework of the proposed 
imaging method. The starting point is given by the 
following decomposition (see [3] for low frequency ECT) 
of k

VV
k
Meas jc

LL
\

− , 

( ) ( ) kk
VV

k
V

k
V

k
V

k
VV

k
Meas

NLLLLLL
jccccjc

+−+−=−
Ω \\\

   (12) 

where we have exploited that kk
V

k
Meas

NLL
c

+=
Ω\

, 

where Ω is the unknown anomaly, k
Vc

L
Ω\

 is the noise-free 

data and kN  is the noise term. The amount of noise 
limits from below the minimum size of the Vj’s, i.e. the 
resolution. Indeed, from equation (12) it follows that 

kk
VV

k
V

NLL
jcc

α≥−
\

, where α is of the order of unity, 

is a necessary condition otherwise the noise term 
destroies the information content depending on Vj. Since 
the norm of k

VV

k

V jcc
LL

\
−  decreases as the size of Vj 

decreases, it is clear that the noise sets a limit to the 
achievable resolution or, vice versa, for a given resolution 
the maxim amount of noise compatible with the method 
is limited. Another limit to the resolution is set by the 
sensitivity of the instruments, specifically, 

k
V

k
VV

k
V cjcc

LLL β≥− \
 where β is a dimensionless 

constant, significantly smaller than the unity, and 
representing the sensitivity of the measurement apparatus. 

Figure 7 shows the behavior of 
k

VV
k
Vk

jcc
LLf

\
max −= and k

V
k

VV
k
Vk

cjcc
LLLg

\
max −=  

as a function of the of the ratio γ between the external 
radius of a coil and the diagonal of the voxel Vj. For the 
sake of simplicity the array is made by three coils        
(fig. 7(a)) and each coil consists of one single turn. The 
array is moved onto a regular 5×5 Cartesian grid with 
step-size of 0.5mm; the maximum in f and g is taken over 
these 25 different positions. It is interesting to see that 
increasing γ  the function f decreases, i.e. the sensitivity 
with respect to the background measurement decreases. 
In other words, it increases the difficulty in appreciating 
the variations of the inductance matrix due to the test 
anomaly. We also notice that g presents a maximum for a 
proper value of γ. This means that for a given coil size, 
there is a proper value for the size of the voxel Vj that 
maximizes the immunity to the noise. 
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Fig. 7. (a) The voxel Vj (black pixel) together with the 
three coils probe of a given size, and the positions (o) 
where the probe is moved. (b) Plot of ƒ(γ). (c) Plot of g(γ) 
assuming that the each coil has one single turn. γ  is the 
ratio between the external radius of a coil and the 
diagonal of the voxel Vj. 
 

V. CONCLUSIONS 
 

The main contribution of this paper is the 
development of a fast imaging method based on the 
monotonicity property of the operator Π mapping the 
defects geometry into the inductance matrix measured at 
high enough frequencies. In this regime (negligible skin-
depth and displacement current) the problem can be 
modeled as a magnetostatic one and this, thanks to the 
elliptic nature of magnetostatic, allows proving the 
monotonicity. Numerical examples confirm this property 
and, moreover, prove the effectiveness of the related fast 
imaging algorithm. 
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