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Abstract – A numerical solution based on integral equa-
tion is derived for an electromagnetic scattering from
M multiple parallel cylinders. The problem is two-
dimensional and the integral equation is solved using the
Nyström method. To validate the algorithm, we compare
our numerical results with the semi-analytical ones ob-
tained from multipole expansion method.

I. INTRODUCTION

Problems of multiple scattering are of significant im-
portance in many areas of technology. Indeed, many wave
propagation problems can be modeled as such. Exam-
ples include electromagnetic and optical communication,
imaging, object characterization, electronic and optical
components, etc. Hence, the development of efficient and
accurate numerical simulation for such problems is highly
desirable. In this paper we discuss an efficient com-
putational algorithm for the problem of approximating
the scattered electromagnetic field from two dimensional
multiple parallel dielectrics of arbitrary cross-sections. For
the sake of clarity, we only consider the TM polarization
case. The method caries out easily for other polarizations
as well. When solving this type of problems, there are two
possible directions to follow. The first is to analytically
treat a simplified model [1,2] that captures the relevant
properties of the actual problem. Although analytic so-
lutions are rarely possible for the structures of arbitrary
realistic complexity, they provide a closed mathematical
description, and in most cases a better understanding, of
the solution. The second class of algorithms utilize numer-
ical methods [3,4] to treat more realistic descriptions of
the underlying physics. However, in exchange, it can be
difficult to find fast and accurate computational model.
Since, for many applications, the assumption of simple
geometry is far from warranted we develop in this paper
an efficient algorithm that can handle complex geometries.
In particular, our method is based on boundary element
method (BEM). Usually, for BEM approximations, the
implementation is based on either Green’s theorem in each
dielectric objet [5,6] or the use of single and/or double
layer potentials [7]. In the case of one dielectric object,

both methods lead to a pair of integral equations for a pair
of unknowns. We deduce that, by using these approaches
for multiple dielectric scatterers, for M interfaces we have
2M unknown functions to determine. For one dielectric
object a single integral equation involving one unknown
function was obtained [8] by using a hybrid of integral
equation and Green’s theorem. It is also possible to obtain
single integral equations by using the extended boundary
condition method [5]. But this later method suffers from
the choice of the boundary as well as ill-posedness. The
purpose of this paper is to obtain an efficient numerical
solution of single Fredholm type integral equations on
each interface for multiple dielectric scattering by the use
of boundary layers and Green’s formula. The method,
which reduces the number of unknowns by half, converges
very fast and is accurate. The numerical computation is
implemented by using the Nyström method. Our results
are validated by numerical examples for circular cylinders
where analytic solution is found by using the multipole
expansion method.

II. THE MATHEMATICAL FORMULATION
OF THE PROBLEM

Let Ωl, l = 1, 2, · · ·M, be the cross-sections of M
parallel cylinders, describing the scatterers (Fig. 1) and

Fig. 1. Multiple scattering of a plane wave ui by many
cylinders.
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Let Γl be the boundary of Ωl. The unit outward normal
ν to Γl is assumed to be directed towards the exterior.
We denote the field outside (in the air) as Ω0, i,e. Ω0 =
R2\ ∪Ml=1 (Ωl).

For simplicity we consider an s-polarized field inci-
dent upon the dielectric (nonmagnetic) cylinders of cross-
sections Ωl, with the electric field parallel to the x3−axis.
But generalization to other polarizations and materials
does not present any difficulty.

Each domain Ωl l = 0, 1, · · ·M, has permittivity
εl. The scatterers are assumed to be illuminated by an
incident field Ei which is a plane wave with direction
d and angle α, i.e. d = (cosα, sinα). With use of
a time dependence in e−jωt (ω is the frequency and
j =
√
−1), the incident electric field is given, for every

point x = (x1, x2), by,

Ei(x) = ejω
√
ε0x·d.

Then (cf. [1]) we have to solve the Helmholtz equa-
tion in each dielectric object Ωl, l = 1, 2, · · ·M and in
the outer region Ω0,

(∇2 + κ2
l )El = 0 in Ωl, l = 0, · · · ,M

where the wave numbers κl are given by κl = ω
√
εl.

For l = 1, 2, · · ·M , the electric field El represents E in
Ωl, and in Ω0 we have E = E0 + Ei, where E0 is the
scattered electric field.

In addition, E0 must satisfy the Sommerfeld radiation
condition, i.e.,

lim
|x|→∞

|x|1/2
(
∂E0

∂|x|
− jκ0E0

)
= 0..

We denote the fundamental solution to the Helmholtz
equations (the free-space source) by,

Φk(x,y) = − j
2
H

(1)
0 (κk|x− y|), k = 0, 1, · · · ,M

where H
(1)
0 is the Hankel function of the first kind

and order zero. We use the factor j/2 (instead of the
standard j/4) for convenience in the derivation of the
integral equations below. In the sequel we shall assume
that ε0 = 1.

III. THE INTEGRAL EQUATION APPROACH
TO SOLVE THE PROBLEM

We would like to obtain a set of M equations with
M unknowns on each boundary Γl of Ωl, l = 1, · · · ,M .
Now, for k = 0, 1, · · ·M, l = 1, 2, · · · ,M and (density)
functions φl, ψl, define the single and double layer poten-
tials,

Slkφl(x) =
∫

Γl

Φk(x,y)φl(y) ds(y), x ∈ R2\Γl

and

Dl
kψl(x) =

∫
Γl

∂

∂ν(y)
Φk(x,y)ψl(y) ds(y),x ∈ R2\Γl,

respectively. Their normal derivatives at some point on a
boundary Γm, m 6= l, are given by,

M l,m
k φl(x) =

∂

∂ν(x)
Slkφl(x), x ∈ Γm

and

N l,m
k ψl(x) =

∂

∂ν(x)
Dl
kψl(x), x ∈ Γm.

Accordingly we shall denote Sl,mk φl(x) and Dl,m
k ψl(x)

the values of Slkφl(x) and Dl
kψl(x) when x belongs to

Γm, m 6= l.
It is known (cf. [9] Sections 2.4 and 2.5) that when

x approaches Γl, Slk and N l
k are continuous whereas Dl

k

and M l
k exhibit jumps. In particular,

Slk = Ŝlk, N
l
k = N̂ l

k, D
l
k = D̂l

k ∓ I,M l
k = M̂ l

k ± I (1)

where the upper (lower) sign corresponds to the limit
when x approaches Γl from outside (inside) and I is the
identity operator. The hats on the operators mean the case
when x ∈ Γl.

To arrive at the desired integral equation we define
a layer ansatz (a combination of single and double layer
potentials) in Ωl, l = 1, 2, · · · ,M , and apply Green’s
theorem in Ω0. So, for l = 1, 2, · · · ,M, let,

El =
(
−jρlSll +Dl

l

)
φl(x) x ∈ Ωl

where ρl are arbitrary nonzero complex numbers.
We have, by jump relations (1),{

El = P ll φl
∂
∂νEl = Qllφl

on Γl (2)

where P ll = −jρlŜll + (I + D̂l
l) and Qll = −jρl(−I +

M̂ l
l ) + N̂ l

l .
In the exterior region, we use Green’s theorem to

obtain (cf. [9] pp. 68-70),{
E0(x) =

∑M
l=1

(
Sl0

∂
∂νE(x)−Dl

0E(x)
)
,x ∈ Ω0,

f(x) =
∑M
l=1

(
Dl

0E(x)− Sl0 ∂
∂νE(x)

)
,x ∈ R2\Ω0,

(3)
where f = 2Ei.

Now, using the jump relations (1), we obtain the
second equation in the system (3) on Γl, l = 1, 2, · · ·M .
Using the boundary conditions, and substituting El and
∂El/∂ν (given in equation (2)) into these equations we
arrive at a set of M integral equations with M unknowns
φl on Γl, l = 1, 2, · · · ,M ,

f = Âl0φl −
M∑

m=1,m6=l

Am,l0 φm on Γl (4)

where
Âl0 =

(
(D̂l

0 − I)P ll − Ŝl0Qll
)
,

and

Am,l0 =
M∑

m=1,m6=l

(
(Dl,m

0 − I)P ll − S
l,m
0 Qll

)
.
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This problem is discretized using the Nyström
method [7,10]. The resulting matrix equation, that in-
volves many matrix-vector multiplications resulted from
the multiplications of layer potentials and/or their deriva-
tives, is solved by a two-grid iterative method [11,12].
The matrix vector multiplications can be done quickly by
FMM routines [13].

IV. NUMERICAL VALIDATION AND
RESULTS

It is well known that E0 has the following asymptotic
behavior [9],

E0(x) =
ejκ0|x|√
|x|

{
E∞(

x
|x|

) +O

(
1
|x|

)}
|x| → ∞

where E∞ is known as the far (scattered) field. It is related
with the intensity at infinity I∞(or the bistatic differential
cross section) as,

I∞ = 2π|E∞|2.

We wish to compute an approximation of the far field
E∞. We use θ to denote the observation angle, i.e., x =
|x|(cos(θ), sin(θ)). Unless otherwise stated we use ω = 1,
and nl = 1.5, l = 1, 2, · · · ,M .

For validating the algorithm we start with the com-
putation of the far field for circular cylinders. A quasi-
analytical solution (QAS) can be obtained in this case
[1].

Fig. 2. The absolute value of the far field against the
incident angle α for two circular cylinders of different
radius using the BEM (solid line) and QAS (dots) algo-
rithms. Here we use θ = 0 (top, left), θ = π/4 (top,
right), θ = π/2 (bottom, left), and θ = 3π/2 (bottom,
right). We have used ε1 = 1.5 and ε2 = 2.3.

In Fig. 2, for different observation angles θ, we plot
the absolute value of the far field against the incident
angle α for two circular cylinders of radii r = 1 and
r = 2 using QAS (dots) and the BEM (solid line)
described in this paper. We see a very good match of

the two solutions. This is achieved for 8 grid points of
the Nyström implementation.

Next we look at the case of more circular cylinders.
To this end we add two more cylinders of radii r = 0.5
and r = 0.25. The positions of the four cylinders is the
same as for the objects in Fig. 5. The result is given in
Fig. 3 where we give similar computations as the case of
the two circular cylinders. Like for the previous case we
see an excellent match of the two methods. To see the
exponential convergence of our integral equation method
we plot the absolute value of the far field against the
number of grid points in Fig. 4.

Fig. 3. The absolute value of the far field against the
incident angle α for four circular cylinders of different
radius using the BEM (solid line) and QAS (dots) algo-
rithms. Here we use θ = 0 (top, left), θ = π/4 (top,
right), θ = π/2 (bottom, left), and θ = 3π/2 (bottom,
right). We have used ε1 = 1.5, ε2 = 2.3 ε3 = 1.9 and
ε4 = 0.5.

Fig. 4. The absolute value of the far field against
the number of grid points for the case of four circular
cylinders with different radii. Here we use θ = 0 and
α = 0.

Finally we look at the case of non-convex boundaries
where analytical results can not be obtained. In particular,

324SEYDOU, DURAISWAMI, SEPPÄNEN: NUMERICAL SOLUTION OF EM SCATTER BY MULTIPLE CYLINDERS



Fig. 5. Four non convex dielectric objects of different
sizes.

consider the case of four such boundaries as given in
Fig. 5. They have the following parametric formula for
0 ≤ t ≤ 2π,

(x, y) = γj (cos(t) + 0.65cos(2t)− 0.65, 1.5sin(t))

where γj , j = 1, · · · , 4, are random real numbers.
When we analyze the convergence in Fig. 6 we see, as

in the case of circular cylinders, a very fast convergence.
In Fig. 7 we give the result of the far field against

the incidence angle for various number of grid points.

Fig. 6. The absolute value of the far field against the
number of grid points for Fig. 5. Here we use θ = 0 and
α = 0.

V. CONCLUSION

We have developed an efficient numerical algorithm
for the computation of scattered fields for two dimensional
parallel dielectrics. The numerical simulations show very
good results compared to existing methods. Our future
work will be to apply this method for analyzing photonic
bandgaps and to the three dimensional objects.

Fig. 7. The absolute value of the far field against the
incident angle α for the geometry in Figure 5 using the
BEM for two grid points (‘o’), six grid points (dots) and
eight grid points (solid line). Here we use θ = 0, ε1 = 1.5,
ε2 = 2.3 ε3 = 1.9 and ε4 = 0.5.
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