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Abstract – A highly parallelizable numerical method
for time dependent high frequency acoustic scattering
problems involving realistic smart obstacles is proposed.
A scatterer becomes smart when hit by an incoming wave
reacts circulating on its boundary a pressure current to
pursue a given goal. A pressure current is a quantity
whose physical dimension is pressure divided by time. In
particular in this paper we consider obstacles that when
hit by an incoming acoustic wave try to generate a virtual
image of themselves in a location in space different from
their actual location. The virtual image of the obstacle
(i.e.: the ghost obstacle) is seen outside a given set con-
taining the obstacle and its virtual image in the apparent
location. We call this problem ghost obstacle scattering
problem. We model this acoustic scattering problem and
several other acoustic scattering problems concerning
other types of smart obstacles as optimal control problems
for the wave equation. Using the Pontryagin maximum
principle the first order optimality conditions associated
to these control problems are formulated. The numerical
method proposed to solve these optimality conditions is
a variation of the operator expansion method and reduces
the solution of the optimal control problem to the solution
of a sequence of systems of integral equations. These
systems of integral equations are solved using suitable
wavelet bases to represent the unknowns, the data and
the integral kernels. These wavelet bases are made of
piecewise polynomial functions and have the property
that the matrices that represent the integral operators on
these wavelet bases can be approximated satisfactorily
with very sparse matrices. This property of the wavelet
bases makes possible to approximate the optimal control
problems considered with linear systems of equations
with hundreds of thousands or millions of unknowns
and equations that can be stored and solved with afford-
able computing resources, that is it makes possible to
solve satisfactorily problems with realistic obstacles hit
by waves of small wavelength. We validate the method
proposed solving some test problems, these problems are
optimal control problems involving a “smart” simplified
version of the NASA space shuttle hit by incoming
waves with small wavelengths compared to its charac-
teristic dimension. We consider test problems with ratio
between the characteristic dimension of the obstacle and
the wavelength of the time harmonic component of the
incoming wave up to approximately sixty. The numer-

ical results obtained are very satisfactory. The website:
http://www.econ.univpm.it/recchioni/scattering/w16 con-
tains stereographic and virtual reality applications show-
ing some numerical experiments relative to the prob-
lems studied in this paper. A more general reference
to the work in acoustic and electromagnetic scattering
of the authors and of their coauthors is the website:
http://www.econ.univpm.it/recchioni/scattering.

Keywords: Acoustic obstacle scattering, smart obsta-
cles, open loop control, operator expansion method, and
wavelet expansion.

I. INTRODUCTION

In this paper we propose a highly performing parallel
numerical method to solve an acoustic time dependent
scattering problem involving a realistic smart obstacle.
The smart obstacle considered is an obstacle that when
hit by an incoming acoustic wave and reacts circulating
on its boundary a pressure current (i.e., a field that
is dimensionally pressure divided by time) in order to
generate a virtual image of a possibly different obstacle
(i.e., a ghost obstacle) in a location in space different
from its actual one. That is, this kind of smart obstacle
when hit by an incoming wave generates a scattered field
that, outside a suitable set containing the smart obstacle
and the ghost obstacle in the apparent location, resembles
to the field scattered in the same circumstances by the
ghost obstacle located in the apparent location that is
in a position in space different from the position of the
obstacle.

Let IR be the set of real numbers and IR 3 be the
three dimensional real Euclidean space, the acoustic time
dependent direct scattering problem involving the smart
obstacle that we want to solve can be stated as follows:

Given an incoming acoustic field propagating in
IR 3, an obstacle Ω ⊂ IR 3 non empty characterized by
an acoustic boundary impedance χ, a ghost obstacle
ΩG ⊂ IR 3 non empty characterized by an acoustic
boundary impedance χG such that Ω ∩ ΩG = ∅ and a
set Ωε ⊂ IR 3, such that Ω, ΩG ⊂ Ωε, find a pressure
current circulating on the boundary of Ω such that the
field scattered by Ω when hit by the incoming acoustic
field appears, outside Ωε, “as similar as possible” to the
field scattered in the same circumstances by ΩG.
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For simplicity in the numerical examples presented
in Section IV we limit our attention to the case when
ΩG is the set Ω translated in space and χ = χG is a
constant. We denote with ∂Ω, ∂ΩG the boundary of Ω
and ΩG respectively. This is the formulation of the ghost
obstacle scattering problem considered in the numerical
examples and it is a simplified version of a more general
formulation of the problem that is given in Section II.
Indeed, in the numerical examples we solve the ghost
obstacle scattering problem in this simplified formulation
since we consider problems that are already difficult
for other reasons. In fact we consider problems that
involve obstacles with complex geometry, that is realistic
obstacles, and incoming waves of small wavelengths.

We formulate the ghost obstacle scattering problem
as an optimal control problem for the wave equation
and, under suitable assumptions, applying the Pontryagin
maximum principle, we derive the first order neces-
sary optimality condition relative to the optimal control
problem considered. This condition is formulated as an
exterior value problem for two coupled wave equations.
Assuming that the incoming and the scattered fields and
some auxiliary variables can be represented as superpo-
sition of time harmonic waves, we reduce the solution
of this exterior problem to the solution of a set of
exterior problems for two coupled Helmholtz equations.
Finally using a perturbation expansion known as operator
expansion method (see for example [1, 2]) we reduce the
solution of this set of exterior problems for two coupled
Helmholtz equations to the solution of a set of systems
of first kind integral equations. This approach has been
used to solve several direct acoustic and electromagnetic
scattering problems involving several kinds of smart ob-
stacles (i.e., undetectable obstacles [2], masked obstacles
[3, 4, 5], ghost obstacles [6, 7]). Moreover some attempts
to solve inverse acoustic scattering problems involving
smart obstacles with ad hoc methods have been made with
promising results (i.e.: for furtive and masked obstacles
[8, 9] and for ghost obstacles [10, 11]).

A common feature of the work contained in the
papers mentioned previously is that the numerical meth-
ods proposed assume implicitly that the smart obstacles
considered must have simple geometries. In particular
they assume that their shape must be not too far from
being the shape of a sphere and that the incoming waves
used to illuminate the obstacles must be a superposition of
time harmonic waves with wavelengths not too small, let
us say approximately not smaller than the characteristic
length of the obstacles. These assumptions are due to
the following facts: the “special” surfaces used in the
development of the operator expansion method are chosen
to be surfaces of spheres and the set of coupled integral
equations coming from the first order optimality condition
is solved projecting the systems of integral equations on a
vector space generated by a finite subset of the spherical
harmonic functions (see [12], p. 77). The use of spherical
surfaces as “special” surfaces of the operator expansion

method and of the spherical harmonic functions as func-
tion basis to approximate the integral equations makes
the corresponding computational method very efficient.
If fact this method reduces the solution of the integral
equations to the solution of diagonal systems of linear
equations. However, it has some disadvantages, one of
them is that in practical computations only the first few
hundreds spherical harmonic functions can be used so that
only linear systems involving few hundreds equations and
unknowns can be considered. That is in the scattering
problems that can be solved satisfactorily using spherical
surfaces as “special” surfaces and the spherical harmonic
functions as function basis, the obstacles must have a
shape not too far from being the shape of a sphere and the
ratios between the characteristic length of the obstacles
and the wavelengths present in the Fourier decomposition
of the incoming field considered must be at most of a few
units.

Moreover, the first order necessary optimality con-
dition given in [6, 7] for the direct ghost scattering
problem is derived assuming that Ω and Ωε are star-like
obstacles with respect to the same point and that the set
Ωε is a “magnification” of the obstacle Ω itself. This
last assumption in [6, 7] is used to make an expansion
involving the surface ∂Ωε, boundary of Ωε, using as “base
point” the surface ∂Ω to get a set of integral equations on
∂Ω. These assumptions restrict the choice of the shape of
the smart obstacles and the choice of the distance between
the smart and the ghost obstacle that can be considered.
In fact, only when the distance between the smart and
the ghost obstacle is sufficiently small we have that the
expansion involving the surface ∂Ωε mentioned above is
convergent.

In this paper we overcome these restrictions giving
a new formulation of the first order necessary optimality
condition. In particular we remove the assumptions that
the set Ω and the set Ωε are starlike with respect to the
same point and that Ωε is a magnification of Ω. Moreover
we remove the assumptions that the “special” surfaces
of the operator expansion method are spherical surfaces
and that Ω is starlike. As a consequence are removed the
restrictions that the smart obstacles considered must have
a shape not too far from being the shape of a sphere
and that the wavelengths of the time harmonic waves
contained in the Fourier decomposition of the incoming
field are at least of the same order of magnitude of the
characteristic length of the obstacles. A first attempt of
removing the restrictions on the shape of the scatterer and
on the wavelengths of the time harmonic waves contained
in the incoming field in the case of smart obstacles that
pursue the goal of being undetectable has been made
in [13]. In particular in [13] the set of the coupled
integral equations coming from the first order necessary
optimality condition of the control problem associated to
the furtivity problem is derived and is solved discretizing
the integral equations using a wavelet basis introduced
in [10]. The use of this wavelet basis makes possible
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to solve with affordable computing resources scattering
problems involving realistic obstacles when the ratio
between the characteristic dimension of the obstacle
and the wavelength of the incoming wave goes up to
(approximately) sixty at the price of solving non diagonal
sparse linear systems having a condition number that
increases when the number of unknowns increases. These
sparse linear systems contain hundreds of thousands or
millions of unknowns and equations. The ghost scattering
problem considered in this paper is more difficult than
the furtivity problem studied in [13]. In fact it requires a
reformulation of the optimal control problem and the use
of wavelet bases with improved sparsification properties
able to approximate the integral operators involved
in the integral equations coming from the first order
necessary optimality condition with very sparse matrices.
Hence, in this paper, a new wavelet basis, introduced in
[14], is used to approximate the set of coupled integral
equations coming from the new formulation of the
first order optimality condition for the acoustic ghost
obstacle scattering problem. This new wavelet basis is
made of piecewise constant functions, and generalizes
the Haar’s basis. Furthermore, the computation of
the matrix elements of the matrices that approximate
the integral operators consists in the computation of
four dimensional integrals independent one from the
other. This type of computation is very well suited for
parallel computing or even for distributed computing.
The computation of these matrix elements is by far the
dominant part of the computation in the solution of
the ghost obstacle scattering problem when the integral
equations that translate the optimal control problem must
be approximated in high dimensional vector spaces.
Concluding we can say that we have developed an
efficient computational method that reduces the solution
of the direct ghost obstacle scattering problem involving
realistic obstacles and small wavelengths (see Section IV
where a simplified version of the NASA space shuttle is
considered as obstacle) to the solution of a set of sparse
linear systems of equations with hundreds of thousands
or millions of unknowns and equations that can be stored
and solved using affordable computing resources. The
computational method takes care of the ill-conditioning
of the sparse linear systems obtained solving them with
an iterative procedure that uses suitably chosen starting
points. Thank to the use of a parallel implementation
of the computational method based on FORTRAN 77
as programming language, on MPI as message passing
library, to the use of the SP5 IBM machine with 168
processors (144 processors dedicated to batch running) of
CASPUR (Roma, Italy) computing center and to the use
of stereographic and virtual reality animations to represent
the numerical results obtained, we can solve efficiently
very difficult scattering problems and we can represent
satisfactorily the results obtained. Some stereographic
and virtual reality applications relative to numerical
experiments on test problems can be found in the website

http://www.econ.univpm.it/recchioni/scattering/w16.
A more general reference to the work in
acoustic and electromagnetic scattering of the
authors and of their coauthors is the website:
http://wwww.econ.univpm.it/recchioni/scattering.

In Section II we formulate the time dependent ghost
obstacle scattering problem as an optimal control problem
for the wave equation and we derive the corresponding
first order optimality condition using the Pontryagin max-
imum principle (see [7]). In Section III, under suitable
assumptions, we reduce the first order optimality condi-
tion derived in Section II first to a set of time harmonic
problems for a system of two coupled Helmholtz equa-
tions and later to a set of systems of integral equations.
Moreover we describe the algorithm developed to solve
the systems of integral equations using a wavelet basis
introduced in [14]. Finally, in Section IV starting from
synthetic data the algorithm discussed in Section III is
used to solve numerically in some test cases the ghost
obstacle scattering problem.

II. THE TIME DEPENDENT GHOST
OBSTACLE DIRECT SCATTERING PROBLEM

Let IC be the set of complex numbers, for η ∈ IC
let |η|, η denote the modulus and the complex conjugate
of η respectively. Let x = (x, y, z)T ∈ IR 3 be a generic
vector where the superscript T means transposed, (·, ·)
be the Euclidean scalar product in IR 3 and ‖ · ‖ be the
corresponding Euclidean vector norm. In the following
with abuse of notation occasionally we will use the real
Euclidean scalar product of complex vectors.

Let us formulate the scattering problem that we want
to study. Let Ω ⊂ IR 3, ΩG ⊂ IR 3 be two bounded simply
connected open sets with locally Lipschitz boundaries ∂Ω,
∂ΩG, and let Ω and ΩG be their closures. Furthermore,
let Ω, ΩG be such that: Ω 6= ∅, ΩG 6= ∅ and Ω∩ΩG = ∅.
We denote with n(x) = (n1(x), n2(x), n3(x))T ∈ IR 3,
x ∈ ∂Ω, the outward unit normal vector to ∂Ω in x ∈ ∂Ω.
Since Ω has a locally Lipschitz boundary n(x), x ∈ ∂Ω,
exists almost everywhere (see [15] Lemma 2.42 p. 88);
similar statements hold for the outward unit normal vector
to ∂ΩG.

We assume that Ω and ΩG are characterized by con-
stant acoustic boundary impedances χ ≥ 0 and χG ≥ 0
respectively. The case χ = +∞ and/or χG = +∞ (i.e.:
the case of acoustically hard obstacles) can be treated with
simple modifications of the formulae that follow. We refer
to (Ω;χ) as to the obstacle, and to (ΩG;χG) as to the
ghost obstacle. Without loss of generality, we can assume
that the origin of the coordinate system lies in Ω.

We consider an acoustic incident wave ui(x, t),
(x, t) ∈ IR 3×IR , propagating in a homogeneous isotropic
medium in equilibrium, with no source terms present,
satisfying the wave equation in IR 3 × IR with wave
propagation velocity c > 0. We denote with us(x, t),
(x, t) ∈ (IR 3 \ Ω) × IR , and with usG(x, t), (x, t) ∈
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(IR 3 \ ΩG) × IR , the waves scattered, respectively, by
the obstacle (Ω;χ) and by the ghost obstacle (ΩG;χG)
when hit by ui(x, t), (x, t) ∈ IR 3 × IR .

The scattered acoustic field us(x, t), (x, t) ∈ (IR 3 \
Ω) × IR , when the obstacle Ω is not smart (i.e. is
an obstacle that does not react to the incident wave
circulating a pressure current on its boundary to pursue a
goal) is defined as the solution of the following exterior
problem for the wave equation (see [1]),

4us(x, t)− 1
c2
∂2us

∂t2
(x, t) = 0, (x, t) ∈ (IR 3 \ Ω)× IR

(1)
with the boundary condition (see [12] p. 66),

−∂u
s

∂t
(x, t)+cχ

∂us

∂n(x)
= g(x, t), (x, t) ∈ ∂Ω×IR (2)

where g(x, t) is given by,

g(x, t) =
∂ui

∂t
(x, t)− cχ ∂ui

∂n(x)
(x, t), (x, t) ∈ ∂Ω× IR

(3)
the condition at infinity,

us(x, t) = O(
1
r

), r → +∞, t ∈ IR (4)

and the radiation condition,

∂us

∂r
(x, t)+

1
c

∂us

∂t
(x, t) = o(

1
r

), r → +∞, t ∈ IR (5)

where r = ‖x‖, x ∈ IR 3, 4 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is
the Laplace operator and O(·) and o(·) are the Landau
symbols. We note that g(x, t), (x, t) ∈ ∂Ω×IR , is defined
almost everywhere, and that the boundary condition of
equation (2) can be adapted to deal with the limit case of
acoustically hard obstacles, i.e. obstacles such that χ =
+∞ (see [1, 2]). The obstacle (Ω;χ) that scatters the
field us solution of equations (1), (2), (4), and(5) is called
passive obstacle. The field usG(x, t), (x, t) ∈ (IR 3\ΩG)×
IR , scattered by the (passive) ghost obstacle is defined
as the solution of equations (1), (2), (4), and(5) when
we replace Ω with ΩG and χ with χG. Note that we
always consider the ghost obstacle (ΩG;χG) as a passive
obstacle.

Remember that in the ghost obstacle problem the
smart obstacle (Ω;χ) when hit by an incoming wave tries
to generate a scattered wave that resembles, outside a
given set containing Ω and ΩG, to the wave scattered by
(ΩG;χG) in the same circumstances. Our goal is to model
the ghost obstacle problem as an optimal control problem
for the wave equation introducing a control variable
ψ(x, t), (x, t) ∈ ∂Ω× IR , acting on the boundary of the
obstacle. This is done replacing the boundary condition
of equation (2) with the following boundary condition,

−∂u
s

∂t
(x, t) + cχ

∂us

∂n(x)
= g(x, t) + (1 + χ)ψ(x, t),

(x, t) ∈ ∂Ω× IR . (6)

We note that the physical dimension of the control
function ψ is pressure divided by time, so that we call ψ
“pressure current”.

Let Ωε be a bounded simply connected open set
containing Ω and ΩG with locally Lipschitz boundary ∂Ωε
and let ds∂Ωε , ds∂Ω be the surface measures on ∂Ωε and
∂Ω (see [15] Lemma 1.1 p. 119-120), respectively.

As done in [7, 6] we define the cost functional,

Fλ,µ,ε(ψ) =
∫

IR
dt{∫

∂Ωε

(1 + χ)λ c [us(x, t)− usG(x, t)]2 ds∂Ωε(x)+∫
∂Ω

(1 + χ)µςψ2(x, t)ds∂Ω(x)
}

(7)

where λ ≥ 0, µ ≥ 0 are dimensionless constants such
that λ + µ = 1, and ς is a nonzero positive dimensional
constant. Note that in the first addendum of equation (7)
we have introduced as a factor the propagation velocity c
that does not appear in the functional used in [6, 7], the
presence of this factor simplifies some of the formulae
that follow. We model the direct ghost obstacle scattering
problem via the following optimal control problem,

minψ∈CFλ,µ,ε(ψ). (8)

Subject to the constraints of equations (1), (4), (5),
and (6). The set C is the space of the admissible controls
and is a vector space that we leave unspecified in this
paper (see [7] for further details). The obstacle (Ω;χ)
that generates the scattered field us solution of equations
(8), (1), (4), (5), and (6) is a smart (or active) obstacle
that we call of ghost obstacle type.

As shown in [2, 7] the cases µ = 0 and µ = 1 are
trivial. The choice of the cost functional of equation (7)
is motivated by the fact that when 0 < µ < 1 we have
λ > 0, that is, when 0 < µ < 1 the minimization of
Fλ,µ,ε makes small on ∂Ωε for all times the difference
between the field scattered by the smart obstacle and the
field scattered by the ghost obstacle and makes small on
∂Ω for all times the control function used to achieve
this goal. Note that forcing the two scattered fields to
be similar on ∂Ωε for all times implies that they remain
similar in IR 3\Ωε for all times. So that an observer located
in IR 3 \ Ωε that observes the scattered field is induced
to believe that the obstacle generating the scattered field
is the ghost obstacle (ΩG;χG) instead than the obstacle
(Ω;χ). From now on we restrict our attention to the case
0 < µ < 1.

We note that the functional of equation (7) is defined
via two integrals, one integral on the boundary of Ω and
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the other integral on the boundary of Ωε. This fact makes
difficult to write conveniently the first order optimality
condition associated to the optimal control problem of
equations (8), (1), (4), (5), and (6). In reference [7] this
difficulty has been solved assuming that the boundary of
Ω is a star like surface and that the boundary of Ωε is
obtained by a simple transformation of the boundary of Ω
that previously we have called magnification. In this paper
we modify this assumption since we deal with obstacles
(see Fig. 3(b)) whose boundaries are not starlike surfaces
with respect to a point in their interior.

The numerical experiments presented in this paper
are done using cylindrical coordinates since the simplified
NASA space shuttle (Fig. 3(b)), that is the obstacle
considered in Section IV, can be described conveniently
using these coordinates. So that, for simplicity, we use
cylindrical coordinates also in this section and in Section
III in the exposition of the solution method. When neces-
sary more general curvilinear coordinate systems can be
considered as shown, for example, in [16].

Let us introduce the canonical cylindrical coordi-
nate system in IR 3, that is (r1, φ, z), with origin in a
point in the interior of the smart obstacle that will be
specified later and let φ̂ = (cosφ, sinφ, 0)T ∈ IR 3,
φ ∈ [0, 2π) and ẑ = (0, 0, z)T = ze3 ∈ IR 3, z ∈ IR ,
e3 = (0, 0, 1)T ∈ IR 3. Note that with abuse of notation, in
order to keep the exposition simple in formulae equations
(9)-(34) we have used the coordinates (r1, φ, z) to de-
note several cylindrical coordinate systems obtained one
from the others with suitable translations, in the specific
contexts considered the coordinate systems used will be
understandable. We assume that:

(a) The obstacle (Ω;χ) is given by,

Ω = {x = (r1 cosφ, r1 sinφ, z)T (9)

= r1φ̂+ ze3 ∈ IR 3 | 0 ≤ r1 < ξ(φ, z),
φ ∈ [0, 2π), z ∈ [zi, zf ] }, (10)

where zi, zf are two real numbers such that zi < zf
and ξ(φ, z) > 0, φ ∈ [0, 2π), z ∈ (zi, zf ) is a
single valued function defined in [0, 2π) × [zi, zf ]
sufficiently regular to make sense out for the manip-
ulations that follow. As a consequence of equation
(9) we have,

∂Ω = {x=(r1 cosφ, r1 sinφ, z)T =
ξ(φ, z)φ̂+ ze3∈ IR 3, φ ∈ [0, 2π), z ∈ [zi, zf ]}.

(11)

(b) The sets ΩG and ∂ΩG are given by,

ΩG = {x = p
G

+ (r1 cosφ, r1 sinφ, sG(z))T =
p
G

+ r1φ̂+ sG(z)e3 ∈ IR 3 |, 0 ≤ r1 < ξG(φ, sG(z)),
φ ∈ [0, 2π), z ∈ [zi, zf ] },

(12)

and

∂ΩG = {x = p
G

+ (r1 cosφ, r1 sinφ, sG(z))T =
p
G

+ ξG(φ, sG(z))φ̂+ sG(z)e3 ∈ IR 3,

φ ∈ [0, 2π), z ∈ [zi, zf ] },
(13)

where sG(z) = zGi +(z−zi)(zGf −zGi )/(zf−zi) is a
linear function of z, zGi , zGf are constants such that
zGi < zGf , ξG(φ, sG(z)), φ ∈ [0, 2π), z ∈ [zi, zf ] is
a single valued function and p

G
∈ IR 3 is a suitable

vector (see Fig. 1).
(c) The sets Ωε and ∂Ωε are given by,

Ωε = {x = p+ (r1 cosφ, r1 sinφ, s(z))T =
p+ r1φ̂+ s(z)e3 ∈ IR 3, 0 ≤ r1 < ξε(φ, s(z)),

φ ∈ [0, 2π), z ∈ [zi, zf ] },
(14)

and

∂Ωε = {x = p+ (r1 cosφ, r1 sinφ, s(z))T =
p+ ξε(φ, s(z))φ̂+ s(z)e3 ∈ IR 3,
φ ∈ [0, 2π), z ∈ [zi, zf ] },

(15)

where s(z) = z∗i + (z− zi)(z∗f − z∗i )/(zf − zi) is a
linear function of z and z∗i , z∗f are constants such
that z∗i < z∗f . Finally, p ∈ IR 3 is a suitable vector
(see Fig. 1) and ξε is a single valued function such
that Ω ⊂ Ωε and ΩG ⊂ Ωε.

Figure 1 shows an example of the ghost obstacle experi-
ment in a simple situation where Ω is a sphere of center
the origin and ΩG is a translation of Ω. Note that only
for simplicity we have chosen the origin of the cylindrical
coordinate system in the center of mass of the smart
obstacle.

Fig. 1. The ghost obstacle experiment: Ω obstacle, ΩG
ghost obstacle, Ωε auxiliary set, O point contained in Ω
and origin of the coordinate system, OG point contained
in ΩG, Oε point contained in Ωε.

Note that in a suitable cylindrical coordinate system
with origin in the point OG of the set ΩG or in the
point Oε of the set Ωε we have respectively the following
representation formulae for ΩG and Ωε,

ΩG = {x = (r1 cosφ, r1 sinφ, z)T =
r1φ̂+ ze3 ∈ IR 3 | 0 ≤ r1 < ξG(φ, z),

φ ∈ [0, 2π), z ∈ [zGi , z
G
f ] },

(16)
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and
Ωε = {x = (r1 cosφ, r1 sinφ, z)T =
r1φ̂+ ze3 ∈ IR 3 | 0 ≤ r1 < ξε(φ, z),

φ ∈ [0, 2π), z ∈ [z∗i , z
∗
f ] }.

(17)

Remember that as already said with abuse of nota-
tion in the previous formulae, (r1, φ, z) denotes several
cylindrical coordinate systems and that given Ω, ΩG such
that Ω 6= ∅, ΩG 6= ∅ and Ω ∩ ΩG = ∅, we must choose
Ωε such that Ω ⊂ Ωε and ΩG ⊂ Ωε.

Under assumptions (a) and (b) and other technical
assumptions (see [2, 7]) applying the Pontryagin maxi-
mum principle, we find that the optimal scattered field
ũs(x, t), (x, t) ∈ (IR 3 \ Ω) × IR , and the corresponding
adjoint variable ϕ̃(x, t), (x, t) ∈ (IR 3\Ω)×IR , satisfy the
first-order necessary optimality condition associated to the
optimal control problem of equations (8), (1), (4), (5), and
(6). That is, they are the solution of the following exterior
problem for a system of two coupled wave equations,

4ũs(x, t)− 1
c2
∂2ũs

∂t2
(x, t) = 0, (x, t) ∈ (IR 3 \ Ω)× IR

(18)

ũs(x, t) = O(
1
r

), r → +∞, t ∈ IR , (19)

∂ũs

∂r
(x, t) +

1
c

∂ũs

∂t
(x, t) = o(

1
r

), r → +∞, t ∈ IR ,
(20)

−∂ũ
s

∂t
(x, t) + cχ

∂ũs

∂n(x)
(x) = g(x, t)− (1 + χ)

ς
ϕ̃(x, t),

(x, t) ∈ ∂Ω× IR , (21)

4ϕ̃(x, t)− 1
c2
∂2ϕ̃

∂t2
(x, t) = 0, (x, t) ∈ (IR 3 \ Ω)× IR ,

(22)

ϕ̃(x, t) = O(
1
r

), r → +∞, t ∈ IR , (23)

∂ϕ̃

∂r
(x, t)− 1

c

∂ϕ̃

∂t
(x, t) = o(

1
r

), r → +∞, t ∈ IR , (24)

−µ∂ϕ̃
∂t

(x, t)− cχµ ∂ϕ̃

∂n(x)
(x) =

−λ c(1 + χ)fε(x)(ũs(p
ε
(x), t)− usG(p

ε
(x), t)),

(x, t) ∈ ∂Ω× IR , (25)

lim
t→−∞

ũs(x, t) = 0, x ∈ IR 3 \ Ω, (26)

lim
t→+∞

ϕ̃(x, t) = 0, x ∈ IR 3 \ Ω, (27)

where p
ε
(x) is a point belonging to ∂Ωε given by,

p
ε
(x) =

ξε(φ, s(z))
ξ(φ, z)

[x− (x, e3)e3] + s((x, e3))e3,

x = ξφ̂+ ze3 ∈ ∂Ω (28)

where s(z) = z∗i +(z−zi)(z∗f−z∗i )/(zf−zi), z ∈ [zi, zf ],
and fε(x), x ∈ ∂Ω, is the function defined by,

fε(x(φ, z)) =
vε(φ, z)
v(φ, z)

, x = ξ(φ, z)φ̂+ ze3 ∈ ∂Ω,

φ ∈ [0, 2π), z ∈ [zi, zf ] (29)

with

v(θ, φ) =[
ξ2(φ, z) +

(
∂ξ

∂φ

)2

(φ, z) + ξ2(φ, z)
(
∂ξ

∂z

)2

(φ, z)
] 1

2

,

φ ∈ [0, 2π), z ∈ [zi, zf ] , (30)

vε(θ, φ) =
(z∗f − z∗i )
(zf − zi)

·
[
ξ2
ε (φ, s(z)) +(

∂ξε
∂φ

)2

(φ, s(z)) + ξ2
ε (φ, s(z))

(
∂ξε
∂s(z)

)2

(φ, s(z))
] 1

2

,

φ ∈ [0, 2π), z ∈ [zi, zf ] . (31)

The relation between ϕ̃ solution of equations (18)-
(27) and the optimal control ψ̃ solution of problem of
equations (8), (1), (4), (5), and (6) is the following one,

ψ̃(x, t) = −1
ς
ϕ̃(x, t), (x, t) ∈ ∂Ω× IR . (32)

For future convenience, we point out that,

ds∂Ω = v(φ, z)dφ d z, φ ∈ [0, 2π), z ∈ [zi, zf ] (33)

and

ds∂Ωε = vε(φ, z)dφ d z, φ ∈ [0, 2π), z ∈ [zi, zf ] . (34)

Note that in order to guarantee conditions of equa-
tions (26) and (27) we must choose the incoming field in
a suitable class of functions (see [2]). This will be done
in Section III. We note that the boundary conditions of
equations (21) and (25) can be slightly modified to deal
with the limit case χ = +∞.

III. THE NUMERICAL SOLUTION OF THE
FIRST ORDER OPTIMALITY CONDITION

Let B = {x ∈ IR 3 | ‖x‖ < 1 } and ∂B be the
boundary of B. We assume that ui, ũs, usG and ϕ̃ can
be approximated in a compact subset of the time axis by
finite sums of time harmonic waves, that is,

ui(x, t) ≈
N1∑
i=1

N2∑
j=1

[
ai,je

−ıωiteıωi(x,αj)/c
]

(x, t) ∈ IR 3 × IR , (35)
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ũs(x, t) ≈
N1∑
i=1

N2∑
j=1

[
ai,je

−ıωitusωi,αj (x)
]
,

(x, t) ∈ (IR 3 \ Ω)× IR , (36)

usG(x, t) ≈
N1∑
i=1

N2∑
j=1

[
ai,je

−ıωitusG,ωi,αj (x)
]
,

(x, t) ∈ (IR 3 \ Ω)× IR , (37)

ϕ̃(x, t) ≈
N1∑
i=1

N2∑
j=1

[
ai,je

−ı ωi tϕωi,αj (x)
]
,

(x, t) ∈ (IR 3 \ Ω)× IR , (38)

where ı ∈ IC is the imaginary unit, N1, N2 are positive
integers, ai,j ∈ IR , ωi ∈ IR , αj ∈ ∂B, i = 1, 2, . . . , N1,
j = 1, 2, . . . , N2 are suitable quantities, usG,ωi,αj , i =
1, 2, . . . , N1, j = 1, 2, . . . , N2 are suitable functions and
usωi,αj (x), ϕωi,αj (x), x ∈ IR 3 \ Ω, i = 1, 2, . . . N1, j =
1, 2, . . . , N2, are functions to be determined. Substituting
the right hand side of equations(35)-(38) into equations
(18)-(27) and defining ς̃ = c ς we obtain that the space
dependent part usω,α(x), x ∈ IR 3\Ω, of the time harmonic
components of ũs, and the space dependent part ϕω,α(x),
x ∈ IR 3 \ Ω, of the time harmonic components of ϕ̃,
(ω, α) = (ωi, αj), i = 1, 2, . . . , N1, j = 1, 2, . . . , N2, are
solutions of the following set of systems of Helmholtz: for
i = 1, 2, . . . , N1, j = 1, 2, . . . , N2, and (ω, α) = (ωi, αj),
we have, (

4usω,α +
ω2

c2
usω,α

)
(x) = 0 (39)

(
4ϕω,α +

ω2

c2
ϕω,α

)
(x) = 0, x ∈ IR 3 \ Ω, (40)

ıωusω,α(x) + cχ
∂usω,α
∂n(x)

(x) + c
(1 + χ)

ς̃
ϕω,α(x) =

bω,α(x), x ∈ ∂Ω, (41)

ıωµϕω,α(x)− cµχ
∂ϕω,α
∂n(x)

(x) + cλ(1 + χ) ·(
usω,α(p

ε
(x))− usG,ω,α(p

ε
(x))

)
= 0, x ∈ ∂Ω, (42)

with the conditions at infinity,

∂usω,α(x)
∂r

− ıω
c
usω,α(x) = o(

1
r

), r → +∞, (43)

∂ϕω,α(x)
∂r

+ ı
ω

c
ϕω,α(x) = o(

1
r

), r → +∞, (44)

where bω,α(x) = −ı ω eı ω(x,α)/c(1 + χ(n(x), α)), x ∈
∂Ω. We remind that p

ε
has been defined in (28).

Using equations (32) and (38) the relation of the ad-
joint variables ϕωi,αj , i = 1, 2, . . . , N1, j = 1, 2, . . . , N2,
with the optimal control variable ψ̃ can be expressed as
follows,

ψ̃(x, t) ≈ −c
ς̃

N1∑
i=1

N2∑
j=1

ai,je
−ı ωi tϕωi,αj (x),

(x, t) ∈ ∂Ω× IR , 0 < µ < 1 . (45)

We propose a variation of the operator expansion method

presented in [17] to solve, using affordable computing
resources, equations (39)-(44) when (Ω;χ) has a complex
geometry and at least some of the wavelengths contained
in the incoming wave packet of equation (35) (i.e.,
some of the quantities |2π/(ωi/c)|, i = 1, 2, . . . , N1)
are small compared with the characteristic dimension
of the obstacle. In the numerical experiments presented
in Section IV we consider problems where the ratio
between the characteristic dimension of the obstacle and
the wavelength of the time harmonic component of the
incident waves goes up to approximately sixty.

As done in equation (35) let us consider acoustic
incoming time harmonic plane waves whose space de-
pendent part is given by,

uiω,α(x) = eı ω(x,α)/c, x ∈ IR 3 (46)

where c > 0 is the wave propagation velocity, ω 6= 0 is the
frequency of the wave, α ∈ ∂B is the wave propagation
direction. Let us define the wave number k as k = ω/c,
we remind that and 2π/|k| is the wavelength of the plane
wave of equation (46). Later we will choose ω = ωi,
i = 1, 2, . . . , N1, and α = αj , j = 1, 2, . . . , N2.

Let us describe briefly the basic steps of the operator
expansion method (see [2, 16, 17] for more details). Let
(r1, φ, z) be the canonical cylindrical coordinate system
introduced in Section II and let us assume that ∂Ω is
given by formula (11). The use of the operator expansion
method to solve equations (39)-(44) is based on the
following assumptions:

(a1) there exists a bounded simply connected open set
Ωc such that Ωc ⊂ Ω with locally Lipschitz bound-
ary ∂Ωc, given by,

∂Ωc = {x = (r1 cosφ, r1 sinφ, z)T ∈ IR 3 |
r1 = ξc(φ, z), φ ∈ [0, 2π), z ∈ [z̃i, z̃f ]} (47)

where z̃i, z̃f are two given real numbers such that
z̃i < z̃f , [z̃i, z̃f ] ⊂ (zi, zf ) and ξc is a single valued
function sufficiently regular to make sense out of
the formulae that follow. Note that we have: 0 <
ξc(φ, z) < ξ(φ, z), φ ∈ [0, 2π), z ∈ (z̃i, z̃f ),

(b1) for (ω, α)=(ωi, αj), i = 1, 2, . . . , N1, j =
1, 2, . . . , N2, the functions usω,α, ϕω,α that solve
the exterior problem (39)-(44) can be written as

226FATONE, RECCHIONI, ZIRILLI: PARALLEL NUMERICAL METHOD TO SOLVE HF GHOST ACOUSTIC SCATTERING



single layer potentials with density functions (to be
determined) supported on ∂Ωc, that is,

usω,α(x) =
∫
∂Ωc

ds∂Ωc(y)Φω
c

(x,y)cω,α(y),

x ∈ IR 3 \ Ω (48)

ϕω,α(x) =
∫
∂Ωc

ds∂Ωc(y)Φω
c

(x,y)fω,α(y),

x ∈ IR 3 \ Ω, (49)

where ds∂Ωc is the surface measure defined on ∂Ωc
that we assume to be given by:ds∂Ωc(y(φ, z)) =
gc(φ, z)dφ dz, (φ, z) ∈ U ′ = (0, 2π) × (z̃i, z̃f ),
where gc is a sufficiently regular positive function,
Φω
c

(x,y) = ei
ω
c
‖x−y‖

4π‖x−y‖ , x, y ∈ IR 3, x 6= y, is
the fundamental solution of the Helmholtz operator
on IR 3 satisfying the radiation condition (43) and
finally cω,α(y), fω,α(y), y ∈ ∂Ωc are the density
functions to be determined mentioned previously.
We note that Φω

c
, the complex conjugate of Φω

c
,

satisfies the radiation condition (44);
(c1) there exists a surface ∂Ωr boundary of a bounded

simply connected open set Ωr representable with a
formula analogous to formula (11) when we replace
the function ξ with a suitable single valued function
ξr such that Ωc ⊂ Ωr and such that the statements
contained in (d1) hold. We refer to the surface ∂Ωr
as “reference surface”;

(d1) letyξc(υ
′) = (ξc(υ′) cos(φ′), ξc(υ′) sin(φ′), z′)T ,

υ′ = (φ′, z′)T ∈ U ′ denote a (generic) point of
∂Ωc, we assume that the following perturbative
expansions of usω,α and ϕω,α hold,

usω,α(x) =
∫
U ′
dυ′gc(υ′)

(
Φω
c

(x,yξc(υ
′))·

+∞∑
s=0

c̃k,α,s(υ′)(ξ(υ′)− ξr(υ′))s
)
,

x ∈ IR 3 \ Ω (50)

ϕω,α(x) =
∫
U ′
dυ′gc(υ′)

(
Φω
c

(x,yξc(υ′))·

+∞∑
s=0

f̃k,α,s(υ′)(ξ(υ′)− ξr(υ′))s
)
,

x ∈ IR 3 \ Ω , (51)

where dυ′ = dφ′ dz′ is the usual Lebesgue measure
on U ′. With abuse of notation we require that
c̃k,α,s(ξ − ξr)s = O((ξ − ξr)s), f̃k,α,s(ξ − ξr)s =
O((ξ − ξr)s) as ξ → ξr, s = 0, 1, 2, . . ..

Note that the surfaces ∂Ωc and ∂Ωr introduced
here have been called “special” surfaces of the operator
expansion method in Section I. We note that usω,α,
ϕω,α given by equations (48) and (49) satisfy the

Helmholtz equations (39) and (40) and the “radiation”
conditions at infinity of equations (43) and (44) for
any choice of the density functions cω,α and fω,α that
make possible differentiation under the integral sign.
Using assumptions (a1)-(d1), substituting equations (50)
and (51) into the boundary conditions (41), (42) and
imposing the boundary conditions (41), (42) order by
order in perturbation theory we obtain a sequence of
systems of integral equations, that is a system made of
two integral equations at each order in the expansion
in powers of (ξ − ξr). In fact remind that k = ω/c
is the wave number of the incoming plane wave and
let U = (0, 2π) × (zi, zf ), xξr (υ), υ ∈ U , be a
(generic) point belonging to ∂Ωr, ∇x be the gradient
operator with respect to x ∈ IR 3, for ν = 0, 1, . . .
let φ

k
(υ) = (1/ık)χn(xξ(υ)), υ ∈ U , Qν(υ,y) =

∂ν

∂rν1
∇xΦk

(
(r1 cosφ, r1 sinφ, z)T ,y

) ∣∣
r1=ξr(υ)

, and
Lν(υ,y) = ∂ν

∂rν1
Φk
(
(r1 cosφ, r1 sinφ, z)T ,y

) ∣∣
r1=ξr(υ)

,
υ ∈ U , y ∈ IR 3, y /∈ ∂Ωr, arguing as in [16] it
can be shown that the solution of problem (39)-(44)
can be reduced to the solution of the following set
of systems of integral equations in the unknowns
ck,α,s(υ′) = gc(υ′)c̃k,α,s(υ′)(ξ(υ′) − ξr(υ′))s, υ′ ∈ U ′,
fk,α,s(υ′) = gc(υ′)f̃k,α,s(υ′)(ξ(υ′) − ξr(υ′))s, υ′ ∈ U ′,
s = 0, 1, 2, . . .,

∫
U ′
dυ′Kξr,ξc(υ, υ

′)ck,α,s(υ′) +

(1 + χ)
ς̃ k

∫
U ′
dυ′ ıΦk(xξr (υ), y

ξc
(υ′))fk,α,s(υ′) =

d1,k,α,s(υ), υ = (υ1, υ2)T ∈ U, s = 0, 1, 2, . . . (52)

−λ(1 + χ)
k

f̂ε(υ)
∫
U ′
dυ′[ı ck,α,s(υ′) ·

Φk(p+ ξε(υ1, s(υ2))φ̂(υ1) + ẑ(υ2), y
ξc

(υ′))]

+µ
∫
U ′
dυ′Kξr,ξc(υ, υ′)fk,α,s(υ

′) = d2,k,α,s(υ),

υ = (υ1, υ2)T ∈ U, s = 0, 1, 2, . . . , (53)

where Kξr,ξc is given by,

Kξr,ξc(υ, υ
′)=

[
Φk(xξr (υ), y

ξc
(υ′)) +(

φ
k
(υ), (∇xΦk)(xξr (υ), y

ξc
(υ′))

)]
,υ ∈ U, υ′ ∈ U ′ (54)

and f̂ε(υ) = vε(υ)/v(υ) (see formulae (30) and (31)),
moreover we have,

d1,k,α,0(υ) = −eı k(xξ(υ),α)
[
1 + χ

(
n(xξ(υ)), α

)]
(55)

d2,k,α,0(υ) = −ı(1 + χ)
λ

k
f̂ε(υ) ·

usG,ω,α(p+ ξε(υ1 + s(υ2))φ̂(υ1) + ẑ(υ2)),

υ = (υ1, υ2)T ∈ U , (56)
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and for s = 1, 2, . . . , we have,

d1,k,α,s(υ) =−
s−1∑
ν=0

(ξ(υ)− ξr(υ))s−ν

(s− ν)!

∫
U ′
dυ′ ·{[(

φ
k
(υ), Qs−ν(υ, y

ξc
(υ′))

)
+ Ls−ν(υ, y

ξc
(υ′))

]
·

ck,α,ν(υ′) +
(1 + χ)
ς̃ k

ıLs−ν(υ, y
ξc

(υ′))fk,α,s(υ′)
}

υ ∈ U, (57)

d2,k,α,s(υ) = −µ
s−1∑
ν=0

(ξ(υ)− ξr(υ))s−ν

(s− ν)!{[(
φ
k
(υ), Qs−ν(υ, y

ξc
(υ′))

)
+Ls−ν(υ, y

ξc
(υ′))

]
·

fk,α,ν(υ′)
}
, υ ∈ U. (58)

Figure 2 shows an example of the relation between
the sets Ω, Ωr, Ωc.

Roughly speaking assumptions (a1), (b1) say that the
spatial parts of the time harmonic components of the scat-
tered field and of the auxiliary variable can be represented
as single layer potentials generated by suitable densities
defined on a surface ∂Ωc contained in the interior of the
smart obstacle (Ω;χ). Assumptions (c1), (d1) say that
the smart obstacle is not far from being a more regular
obstacle (Ωr;χ) and that the density functions of the
single layer potentials of equations (48) and (49) can be
expressed as a power series of the “distance” between the
boundary of Ω and the boundary of Ωr. Assumptions (a1),
(b1) make possible to formulate the boundary conditions
(41), (42) as Fredholm integral equations of the first kind
avoiding singular kernels even when ∂Ω is only Lipschitz
continuous. These integral equations are ill posed so that
to solve them numerically we try to take care of their
ill-posedness using the perturbation series of equations
(50) and (51) whose convergence is assumed in (c1),
(d1). Note that thank to these last assumptions, we have
reduced the solution of the optimal control problem to
the solution of a set of systems of integral equations of
the first kind whose ill-posedness is controlled via the
perturbation approach.

Since we want to solve these systems of integral
equations when the smart obstacle has complex geom-
etry and the wavelength of the incoming wave is small
compared to the characteristic dimension of the obstacle

Fig. 2. An example of the relation between Ω, Ωr, Ωc.

we need to discretize the integral equations using finite
dimensional vector spaces of high dimension. The use
of suitable wavelet bases to represent the unknown den-
sities, the data and the integral kernels of the integral
equations (52) and (53) allows us to approximate the
integral equations in finite-dimensional vector spaces of
high dimension with sparse systems of linear equations
that can be solved with affordable computing resources
even when they involve hundreds of thousands or millions
of unknowns and equations. This is due to the “sparsifying
properties” of the wavelet basis used.

Let us introduce the wavelet basis used in the ex-
periments of Section IV. Let L2(U ′) and L2(U) be the
Hilbert spaces of square integrable real functions with
respect to the Lebesgue measure defined on U ′ and on
U respectively. As shown in [14], we generate a wavelet
basis of L2(U ′) and of L2(U) using the tensor product
and a suitable affine transformation of a wavelet basis of
L2((0, 1)). The wavelet basis of L2((0, 1)) used in the nu-
merical experiments presented in Section IV is generated
via the multi-resolution analysis [18, 14] starting from the
following orthonormal piecewise polynomial functions of
L2((0, 1)). Let us define three functions that are known as
wavelet “mother” functions. Let c1 = 0.44721359549996,
c2 = 1.3416407864998 and let V be the real matrix given
by,

V = ((vi,j)i=1,2,3, j=1,2,3,4) =

 1 −1 −1 1
−c1 c2 −c2 c1
−c2 −c1 c1 c2


(59)

we define the following piecewise polynomial functions
defined in the interval (0, 1),

Ψi(z) =


vi,1, 0 < x < 1/4,
vi,2, 1/4 ≤ x < 1/2,
vi,3, 1/2 ≤ x < 3/4,
vi,4, 3/4 ≤ x < 1,

i = 1, 2, 3, (60)

and let ψi,m,ν(z), z ∈ (0, 1), i = 1, 2, 3, m = 0, 1, . . .,
ν = 0, 1, 2, . . . , 4m − 1 be the function defined by,

ψi,m,ν(z) =
{
4m/2ψi(4mz − ν), z ∈ (ν4−m, (ν + 1)4−m),
0, z ∈ (0, 1) \ (ν4−m, (ν + 1)4−m).

(61)
As shown in [14] the set Wa,b defined as follows,

Wa,b=
{
ψ̂j,m,ν(y)=

1√
b− a

ψj,m,ν

(
y − a

(b− a)

)
, y∈(a, b),

j = 1, 2, 3 , m = 0, 1, . . . , ν = 0, 1, 2 . . . , 4m − 1 }

∪
{
L0(y) =

1√
b− a

, y ∈ (a, b)
}

(62)

is an orthonormal basis of L2((a, b)), a < b, a, b ∈ IR .
We note that in equation (62) we have used the announced
affine transformation to go from L2((0, 1)) to L2((a, b))
and that the wavelet mother functions Ψ1 and Ψ2 of
L2((0, 1)) defined in equation (60) have two vanishing
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moments, that is:
∫ 1

0
dxxmΨi(x) = 0, m = 0, 1, i = 1, 2

while the wavelet mother function Ψ3 of L2((0, 1)) has
only one vanishing moment, that is

∫ 1

0
dxΨ3(x) = 0 and

we have
∫ 1

0
dxxΨ3(x) 6= 0.

Starting from this wavelet basis and using the tensor
product the integral equations (52) and (53) can be
reduced to a system of infinitely many linear equations
whose unknowns are the coefficients of the representation
on the wavelet basis of the density functions ck,α,s,
fk,α,s, s = 0, 1, . . .. Truncating the wavelet expansions
we reduce the approximate solution of the integral equa-
tions (52) and (53) to the solution of (eventually high
dimensional) linear systems. These linear systems are
approximated with sparse linear systems using a simple
procedure that consists in setting to zero the elements
of the matrices representing the integral kernels smaller
in absolute value than a given threshold, in this way we
obtain very sparse matrices. In fact, thank to the sparsi-
fying properties of the wavelet basis introduced above,
the kernels of the integral equations are approximated
satisfactorily by the sparse matrices obtained with the
procedure described above. Using these sparse matrices
as coefficient matrices of linear systems that approximate
those considered above we obtain sparse linear systems
that approximate the integral equations (52) and (53).
Finally, these sparse linear systems are solved with a
suitable parallelization of the conjugate gradient method
(see [16, 17]).

IV. NUMERICAL EXPERIENCE

In this Section we assume that the smart obstacle
(Ω;χ) and the ghost obstacle (ΩG;χG) have boundary
acoustic impedance equal to infinity, i.e.: χ = χG = +∞,
that is the smart obstacle and the ghost obstacle are acous-
tically hard obstacles. This implies that the equations
written in the previous Sections must be slightly changed
to be adapted to deal with hard obstacles.

In the numerical experiments we consider as incom-
ing acoustic fields time harmonic plane waves whose
space dependent part is given by equation (46) or wave
packets of the form,

ui(x, t) = e−[(γ,x)−ct]2/4ζ2 , (x, t) ∈ IR 3 × IR (63)

where γ ∈ ∂B and ζ ∈ IR , ζ 6= 0. The obstacle
Ω in all the experiments is given by a smart simplified
model of the NASA space shuttle. The original model
of the NASA space shuttle (see Fig. 3(a)) has been
modified obtaining the simplified NASA space shuttle
(see Fig. 3(b)) in order to have an obstacle whose bound-
ary can be represented with a single valued function
in a suitable cylindrical coordinate system, that is in
order to have the representation of equation (11) of the
boundary of the obstacle for a suitable choice of the
cylindrical coordinate system and of the function ξ. The
data relative to the original obstacle (see Fig. 3(a)) are

Fig. 3. (a) The NASA space shuttle, and (b) Simplified
version of the NASA space shuttle.

available in the website http://avalon.viewpoint.com/. The
physical dimensions of the shuttle are expressed in units
where 1unit=56.14/14meters. The maximum length of
the shuttle in the direction of the symmetry axis of its
main body corresponds to 14units. The space shuttle
is an acoustically hard obstacle, this justifies the choice
χ = +∞ made previously and the sound speed in the
air at sea level is 331.45meters/seconds so that we
choose c = 331.45meters/seconds that corresponds
to c ' 82.65units/seconds. Note that the z-axis of
the cylindrical coordinate system used to represent the
obstacle is chosen to be the “symmetry” axis of the main
body of the simplified NASA space shuttle (see Fig. 4).
In the following the lengths are expressed in units.

We choose p = (0, 7.5, 1.5)T ∈ IR 3, zi = zGi = −7,
zf = zGf = 7, z∗i = −16, z∗f = 16, s(z) = z∗i +
(z∗f − z∗i )(z − zi)/(zf − zi), z ∈ [zi, zf ], ξε(φ, s(z)) =√

(1− s(z)2/d2)/(cos2 φ/a2 + sin2 φ/b2) where a = 8,
b = 13, d = 16 and the ghost ΩG is the translation
of p

G
= (0, 15, 2)T ∈ IR 3 of Ω. In Fig. 4 we show

the setting of the ghost obstacle experiment studied here
and the coordinate axes. The surfaces ξr, ξc have been
chosen such that the kernels Kξr,ξc and Φ(xξr ,yξc)
defined in Section III are continuous with their first partial
derivatives and we use always the first two terms of the
operator expansion series given in formulae (50) and (51).

We remind that the website:
http://www.econ.univpm.it/recchioni/scattering/w16 con-
tains some auxiliary material that helps the understanding
of the numerical experiments discussed here including
stereographic and virtual reality applications.

The first experiment shows the effect due to the
smart character of the obstacle for different incident time
harmonic plane waves given in equation (46) and several
values of the parameter λ, 0 ≤ λ ≤ 1. We remind that
we are assuming λ ≥ 0, µ ≥ 0, µ + λ = 1, ς = 1
and that the smart obstacle reproduces exactly the field
generated by the ghost obstacle on ∂Ωε when µ = 0,
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λ = 1. The L2 norm of the space dependent part of the
pressure current Ψ̃ employed to obtain the ghost effect can
be considered as a measure of the price payed in order to
have the smart behaviour of the obstacle. We note that the
quantity nλψ,k defined in (equation (66)) is proportional to
the L2 norm of the space dependent part of the pressure
current mentioned above.

Let us introduce the following quantities,

dλs,G,ω =

√√√√∫∂Ωε
|usω,α(x)− usG,ω,α(x)|2ds∂Ωε(x)∫
∂Ωε
|usG,ω,α(x)|2ds∂Ωε(x)

(64)

dp,G,ω =

√√√√∫∂Ωε
|usp,ω,α(x)− usG,ω,α(x)|2ds∂Ωε(x)∫
∂Ωε
|usG,ω,α(x)|2ds∂Ωε(x)

,

(65)

nλψ,ω =

√∫
∂Ω

|ϕω,α(x)|2ds∂Ω(x) , (66)

eλω =
dλs,G,ω
dp,G,ω

, (67)

where usp,ω,α is the field scattered by (Ω;χ) as a passive
obstacle, and nλψ,ω , as said above, is the quantity that
measures the “size” of the pressure current required to
get the smart effect.

Table 1 shows the ghost effect obtained. In fact
from left to right Table 1 shows the value of µ

λ , ω/c,
RT , dp,G,ω , dλs,G,ω , eλω and nλψ,ω, where RT is defined
as the ratio between the characteristic dimension of the
obstacle and the wavelength of the incident time harmonic
plane wave. The propagation direction of the incident
plane wave in the coordinate system shown in Fig. 4 is
α = (sin(π/4) cos(π/4), sin(π/4) sin(π/4), cos(π/4))T .

Fig. 4. The ghost obstacle experiment: the sets Ω (smart
obstacle), ΩG (ghost obstacle), Ωε (auxiliary set) and the
coordinate system.

Note that when the ratio µ
λ goes to zero, i.e., when

λ goes to 1, the ghost effect increases, in fact dλs,G,ω
decreases to zero and the price paid to obtain the ghost
effect increases that is nλψ,ω increases. Moreover, the
column eλω of Table 1 shows that when the wave number,
ω
c , increases the smart effect slightly deteriorates. In this
experiment to solve the ghost obstacle scattering problem

Table 1. The ghost effect.
µ
λ

ω
c RT dp,G,ω dλs,G,ω eλω nλψ,ω

0.1 10π 60 2.2791 0.5150 0.2259 31.632

0.001 10π 60 2.2791 1.872e-02 8.2112e-03 333.04

0.1 2π 14 0.5325 0.1003 0.1883 48.464

0.001 2π 14 0.5325 2.9671e-03 5.5718e-03 88.168

0.1 1 7
π 1.9351 0.2068 0.1068 28.290

0.001 1 7
π 1.9351 3.2942e-03 1.7036e-03 35.841

we have used 262144 real variables when RT = 60,
16384 real variables when RT = 14 and 1024 real
variables when RT = 7/π, that is we have solved linear
systems of 262144, 16384, 1024 equations and unknowns
when RT is equal to 60, 14, 7/π respectively. The CPU
time required to compute the field scattered by the smart
obstacle when RT = 60 is about 800 hours on the SP5
machine of the CASPUR center. This execution time
includes the computation of the field scattered by the
ghost obstacle as passive obstacle. Note that using a
parallel implementation of the numerical code the clock
time needed to compute the field scattered by the smart
obstacle reduces to about six hours when we use 128
processors. We note that due to their condition number
the linear systems used in this experiment must be solved
with some care.

The second experiment shows the scattering from a
time dependent incoming wave of equation (63) where
γ = (sin(π/4) cos(π/4), sin(π/4) sin(π/4), cos(π/2))T

(in the coordinate system of Fig. 4, and ζ = 1/(2π)).
In formulae (35), (36), (37), and (38) we have used the
Gauss-Hermite quadrature rule with 400 nodes to approx-
imate the Fourier transforms in the conjugate variable of
time ω that give ui, ũs, usG, ϕ̃ respectively. Indeed with
the choice ζ = 1/(2π) to get a satisfactory approximation
of the incoming wave of equation (63) on an adequate
compact set of the time axis only 30 wave numbers are
needed. In order to compute the time harmonic compo-
nents of the scattered waves of equations (36) and (37)
we have used 1024, 4096, 16384 real variables to solve
the time harmonic problems according with the value of
RT considered. We have chosen µ

λ = 10−10, µ = 1− λ,
ς = 1. We note that a rough estimate of the CPU time
required to carry out this experiment is 5000 hours on the
SP5 machine of the CASPUR center.

Let ∂D be the boundary of the sphere D having
center in Oε = O + p (see Figs. 1 and 4) and radius
15.

Note that D contains Ω, ΩG. Using the canonical
spherical coordinate system (r, θ, ρ) we have,

∂D = {x = p+ (15 sin θ cos ρ,
15 sin θ sin ρ, 15 cos θ)T ∈ IR 3 ,
θ ∈ [0, π] , ρ ∈ [0, 2π) } .

(68)

Figure 5 shows the field scattered by the passive
obstacle usp(x, t), by the smart obstacle us(x, t) and by
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the ghost obstacle usG(x, t) when x ∈ ∂D, for three time
values: t = t1 = −0.08,t2 = 0.03,t3 = 0.24.

Figure 6 shows the value of the incoming field when
x ∈ ∂D and t = t1, t = t2, t = t3.

We note that in Fig. 5 the second and third columns
are very similar, that is, the field scattered by the smart
obstacle (second column) behaves as the field scattered
by the ghost obstacle (third column). Furthermore, when
the incoming acoustic field goes through D we can see
that the passive and the ghost obstacle reacts in a different
way when t = t1 and t = t3 and in a similar way when
t = t2. This effect is due to the fact that D is sphere with
center in Oε = O+ p that is in a point lying between the
passive and ghost obstacles. So that, when t = t1 the front
of the incoming acoustic field (see Fig. 6 first column) is
on the side where the passive obstacle is (φ ∈ [π/4, π])
and when t = t3 (see Fig. (6) third column) the incoming
acoustic field is on the side where the ghost obstacle is
(φ ∈ [3π/2, 2π]).

Fig. 5. The ghost effect on the surface of a sphere.

Fig. 6. The effect of the incoming field on the surface of
a sphere.

ACKNOWLEDGEMENT

It is a pleasure to thank Mrs. Claudia Truini and
Mr. Piero Lanucara of CASPUR (Roma, Italy) for the
helpful assistance in the realization of the stereographic
applications shown in the website associated with this
paper.

REFERENCES

[1] E. Mecocci, L. Misici, M. C. Recchioni, and F.
Zirilli, “A new formalism for time dependent wave
scattering from a bounded obstacle,” Journal of the
Acoustical Society of America, vol. 107, pp. 1825–
1840, 2000.

[2] F. Mariani, M. C. Recchioni, and F. Zirilli, “The use
of the Pontryagin maximum principle in a furtivity
problem in time-dependent acoustic obstacle scatter-
ing,” Waves in Random Media, vol. 11, pp. 549-575,
2001.

[3] L. Fatone, M. C. Recchioni, and F. Zirilli, “Some
control problems for the Maxwell equations related
to furtivity and masking problems in electromagnetic
obstacle scattering,” in Mathematical and Numerical
Aspects of Wave Propagation. Waves 2003, G. C.
Cohen, E. Heikkola, P. Joly, and P. Neittaanmaki
Editors, Springer Verlag, Berlin, pp. 189-194, 2003.

[4] L. Fatone, M. C. Recchioni, and F. Zirilli, “A mask-
ing problem in time dependent acoustic obstacle
scattering,” Acoustics Research Letters Online, vol.
5, no 2, pp. 25-30, 2004.

[5] L. Fatone, M. C. Recchioni, and F. Zirilli, “Furtivity
and masking problems in time dependent electro-
magnetic obstacle scattering,” Journal of Optimiza-
tion Theory and Applications, vol. 121, pp. 223-257,
2004.

[6] L. Fatone, M. C. Recchioni, and F. Zirilli, “Math-
ematical models of “active” obstacles in acoustic
scattering,” in Control and Boundary Analysis, J.
Cagnol and J. P. Zolesio Editors, Lecture Notes in
Pure and Applied Mathematics, vol. 240, Marcel
Dekker/CRC Press, Boca Raton, Fl. USA, pp. 119-
129, 2005.

[7] L. Fatone, G. Pacelli, M. C. Recchioni, and F. Zirilli,
“Optimal control methods for two new classes of
smart obstacles in time dependent acoustic scatter-
ing,” Journal of Engineering Mathematics, vol. 56,
pp. 385–413, 2006.

[8] L. Fatone, M. C. Recchioni, A. Scoccia, and F.
Zirilli, “Direct and inverse scattering problems in-
volving smart obstacles,” Journal of Inverse and Ill-
Posed Problems, vol. 13, pp. 247-257, 2005.

[9] L. Fatone, M. C. Recchioni, and F. Zirilli, “A method
to solve an acoustic inverse scattering problem in-
volving smart obstacles,” Waves in Random and
Complex Media, vol. 16, pp. 433-455, 2006.

231 ACES JOURNAL, VOL. 23, NO. 3, SEPTEMBER 2008



[10] L. Fatone, M. C. Recchioni, and F. Zirilli,
“New scattering problems and numerical meth-
ods in acoustics,” in Recent Research Develop-
ments in Acoustics, S.G. Pandalai Managing Editor.
Transworld Research Network, Kerala India, Vol. II,
pp. 39-69, 2005.

[11] L. Fatone, M. C. Recchioni, and F. Zirilli, “A numer-
ical method to solve an acoustic inverse scattering
problem involving ghost obstacles”, Journal of In-
verse and Ill-Posed Problems, vol. 15, pp. 57–82,
2007.

[12] D. Colton and R. Kress, Integral Equation Methods
in Scattering Theory, John Wiley, New York, 1983.

[13] L. Fatone, M. C. Recchioni, and F. Zirilli, “A numer-
ical method for time dependent acoustic scattering
problems involving smart obstacles and incoming
waves of small wavelengths,” in Mathematical Mod-
eling of Wave Phenomena, B. Nilsson, L. Fishman
Editors, AIP Conference Proceedings, vol. 834, AIP
Publ.,Melville, New York, pp. 109-121, 2006.

[14] L. Fatone, M. C. Recchioni, and F. Zirilli, “New
wavelet bases made of piecewise polynomial func-
tions: approximation theory, quadrature rules and
applications to kernel sparsification and image com-
pression,” submitted to SIAM Journal on Scientific
Computing.
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