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Abstract – This paper proposes an accurate and rapidly-
convergent algorithm for enhanced adaptive beamforming
based on the combination of the least mean mixed norm
(LMMN) algorithm with initialization using sample
matrix inversion (SMI). The algorithm uses a mixing
parameter δ which controls the proportions of the error
norms and offers an extra degree of freedom within
the adaptation. Monte Carlo simulations show that the
misadjustment curve has a minimum at δ = 0.40 which
means that the proposed algorithm has an optimum
steady-state performance at this mixing parameter
value. The convergence of the algorithm is further
improved by employing SMI to initialize the weights
vector in the LMMN update equation. This makes
the proposed SMI-initialized LMMN algorithm have a
better steady state performance when compared to the
least mean squares (LMS) algorithm and better stability
properties when compared to the least mean fourth
(LMF) algorithm. Simulation results obtained show
that the developed SMI-initialized LMMN algorithm
outperforms other algorithms in terms of computational
efficiency, numerical accuracy, and cosnvergence rate.

Keywords: Smart antennas, adaptive beamforming, and
least mean squares.

I. INTRODUCTION

Smart antennas have emerged as one of the leading
innovations for achieving highly efficient networks that
maximize capacity and improve quality and coverage.
Smart antennas provide greater capacity and performance
benefits than standard antennas because they can be used
to customize and fine-tune antenna coverage patterns to
the changing traffic or radio frequency (RF) conditions in
a wireless network [1]. Figure 1 shows a smart antenna
system which consists of a uniform linear array (ULA) for
which the current amplitudes are adjusted by a set of com-
plex weights using an adaptive beamforming algorithm.
The adaptive beamforming algorithm optimizes the array
output beampattern such that maximum radiated power
is produced in the directions of desired mobile users and
deep nulls are generated in the directions of undesired
signals representing co-channel interference from mobile
users in adjacent cells. Prior to adaptive beamforming, the

directions of users and interferers must be obtained using
a direction-of-arrival (DOA) estimation algorithm [2].

Recent research efforts into smart antennas have
varied over a wide range of methods and applications
including array pattern synthesis based on null steer-
ing and multi-user beamforming using a phase control
method [3], circular and hexagonal array geometries for
smart antenna systems [4], adaptive and a switched beam
smart antenna systems for wireless communications [5],
tapered beamforming method for uniform circular arrays
[6], beam steering with null and excitation constraints
for linear antenna arrays [7], displaced sensor array for
improved signal detection [8], and finally robust adaptive
beamforming algorithms [9, 10]. The emphasis of this
paper is on the development of enhanced adaptive beam-
forming algorithms for robust interference suppression.

Adaptive beamforming is achieved using adaptive
antenna array for which the weights of the array element
currents are adjusted in order to filter out the inter-
fering signals from undesired sources, while enhancing
the signal of interest from the desired source. Adaptive
beamforming algorithms are typically characterized in
terms of their convergence properties and computational
complexity. One practical adaptive algorithm is the Least
Mean Squares (LMS) which is simple to implement. It
does not require measurements of the pertinent correlation
functions, nor does it require matrix inversion. However,
the LMS algorithm converges slowly when compared with
other complicated algorithms such as the Recursive Least
Square (RLS) [11]. On the other hand, Sample Matrix
Inversion (SMI) algorithm has a fast convergence behavior
However, because its speedy convergence is achieved
through the use of matrix inversion, the SMI algorithm is
computationally intensive. Moreover, the SMI algorithm
has a block adaptive approach for which it is required
that the signal environment does not undergo significant
change during the course of block acquisition.

Various adaptive MMSE receivers are based on the
standard quadratic cost function. So far, the LMS algo-
rithm has proved popular for many applications because
of its simplicity and ease of implementation [2, 12] . How-
ever, many alternatives can also be defined to improve
the adaptation performance in specific statistical environ-
ments including the Least Mean Mixed Norm (LMMN)
algorithm [13, 14]. This algorithm has been used to
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Fig. 1. A functional block diagram of a smart antenna
system.

update the tap coefficients of the feedforward and feed-
back filters for the adaptation of the non-linear receiver,
coupled with a second order phase tracking subsystem,
for asynchronous DS-CDMA communication system im-
paired by double-spread multipath channel and Gaussian
mixture impulsive noise [15]. The purpose of this paper is
to develop an enhanced adaptive beamforming algorithm
based on LMMN but with SMI initialization to ensure
faster convergence. It is shown that judicious choice
of the LMMN algorithm mixing parameter provides an
algorithm with intermediate performance between the two
special cases of least mean squares (LMS) and least mean
fourth (LMF) algorithms. It is shown that the developed
LMMN algorithm along with SMI initialization provides
better steady state performance than the LMS algorithm
and better stability properties than the LMF algorithm.

The rest of the paper is organized as follows: Section
II describes the signal model for an adaptive beamformer
based on the ULA configuration. Section III presents the
theory of adaptive beamforming using the LMS algorithm,
the LMF algorithm, and the proposed SMI-initialized
LMMN algorithm. Simulation results are presented in
Section IV showing that the proposed SMI-initialized
algorithm outperforms the other algorithms. Finally,
conclusions are given in Section V.

II. SIGNAL MODEL

The standard array geometry that has been used for
smart antenna systems is the uniform linear array (ULA)
depicted in Fig. 2. A uniform linear array consists of
N elements that are spaced apart by half wavelength
(d = λ/2). The inter-element spacing in a ULA is
chosen to be λ/2 in order to reduce mutual coupling
effects which deteriorate the performance of the DOA
estimation algorithm as demonstrated in [16-21]. If the
inter-element spacing ischosen to be smaller than λ/2,
mutual coupling effects then cannot be ignored and the
DOA estimation algorithm fails to produce the desired
peaks in the angular spectrum. On the other hand,
increasing the inter-element spacing beyond λ/2 results
in spatial aliasing which takes the form of unwanted or

Fig. 2. Gemetry of a Uniform Linear Array (ULA) of N
sensors that are equally spaced apart a distance d = λ/2..

misplaced peaks in the angular spectrum. It is therefore
concluded that d = λ/2 represents the optimum value for
the inter-element spacing in a ULA.

The main advantage of using a ULA is that it
has the simplest geometry, an excellent directivity, and
produces the narrowest main-lobe in a given direction in
comparison to other array geometries. The ULA consists
of N linear equispaced omnidirectional sensors with inter-
element spacing d = λ/2 and is positioned along the x
axis with an azimuth angle θm measured with respect
to the z axis. It is assumed that the ULA receives M
narrowband source signals sm(t) from incidence direc-
tions θ1, θ2, ....θM , as shown in Fig. 2. The array also
receives I narrowband source signals si(t) from undesired
(or interference) users arriving at directions θ1, θ2, ....θI .
At a particular instant of time t = 1, 2, ...,K,where K
is the total number of snapshots taken, the desired users
signal vector xS(t) can be defined as,

xS(t) =
M∑

m=1

a(θm)sm(t) (1)

where a(θm) is the N × 1 array steering vector which
represents the array response at direction θm and is given
by,

a(θm) = [exp[j(n− 1)ψm]T ; 1 ≤ n ≤ N (2)

where[(.)]T is the transposition operator, and ψm repre-
sents the electrical phase shift from element to element
along the array defined by ψm = 2π(d/λ) sin θm where
d is the inter-element spacing and λ is the wavelength of
the received signal. The desired users signal vector xS(t)
of equation (1) can be written as,

xS(t) = ASs(t) (3)

where AS is the N×M matrix of the desired users signal
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direction vectors and is given by,

AS = [a(θ1),a(θ2), ....,a(θM )] (4)

and s(t) is the M × 1 desired users source waveform
vector defined as,

s(t) =
[
s1(t) s2(t) .. .. sM (t)

]T
. (5)

We also define the undesired (or interference) users
signal vector xI(t) as,

xI(t) = AI i(t) (6)

where AI is the N × I matrix of the undesired users
signal direction vectors and is given by,

AI = [a(θ1),a(θ2), ....,a(θI)] (7)

and i(t) is the I × 1 undesired (or interference) users
source waveform vector defined as,

i(t) =
[
i1(t) i2(t) .. .. iI(t)

]T
. (8)

The overall received signal vector x(t) is given by
the superposition of the desired users signal vector xS(t),
undesired (or interference) users signal vector xI(t), and
an N × 1 vector n(t) which represents white Gaussian
sensor noise. Hence, x(t) can be written as,

x(t) = xS(t) + n(t) + xI(t). (9)

The conventional (forward-only) estimate of the co-
variance matrix defined as,

R = E{x(t)xH(t)} (10)

where E{.} represents the ensemble average; and (.)H

is the Hermitian transposition operator. By applying
temporal averaging over K observation snapshots taken
from the signals incident on the sensor array, R can be
approximated as, [22]

R =
1
K

K∑
k=1

x(k)xH(k) (11)

Substituting for x(t) from equation (9) in equation
(11) yields,

R =
1
K

K∑
t=1

AS

[
s(k)s(k)H

]
AH

S + n(k) n(k)H

+
1
K

K∑
t=1

AI

[
i(k)i(k)H

]
AH

I . (12)

Finally, equation (12) can be written in compact form
as,

R = ASRssAH
M + σ2

nI + AIRiiAH
I (13)

where Rss = E{s(t)sH(t)} is an M ×M desired users
source waveform covariance matrix, Rii = E{i(t)iH(t)}
is an I × I undesired users source waveform covariance
matrix, σ2

n is the noise variance, and I is an identity matrix
of size N × N . In general the array correlation matrix
obtained in equation (13) is referred as the covariance

matrix only when the mean values of the signals and
noise are zero. The arriving signals mean value must
be necessarily zero because antennas can not receive d.c.
signals.

III. ADAPTIVE BEAMFORMING
ALGORITHM

An adaptive beamformer, which is shown in Fig.
2, consists of multiple antennas; complex weights, the
function of which is to amplify (or attenuate) and delay
the signals from each antenna element; and a summer
to add all of the processed signals, in order to tune out
the signals not of interest, while enhancing the signal
of interest. Hence, beamforming is sometimes referred
to as spatial filtering, since some incoming signals from
certain spatial directions are filtered out, while others are
amplified. The output response of the uniform linear array
is given by,

y(k) = wHx(k), (14)

where w is the complex weights vector and x is the
received signal vector given in equation (9). If d(k)
denotes the sequence of reference or training symbols
known a priori at the receiver at time n, an error, e(k) is
formed as,

e(k) = d(k)−w(k)Hx(k). (15)

This error signal e is used by the beamformer to
adaptively adjust the complex weights vector w so that the
mean-squared error (MSE) is minimized. It is intuitively
reasonable that successive corrections to the weights
vector in the direction of the negative of the gradient of the
MSE function should eventually lead to minimum mean
square error, at which point the weights vector assumes
its optimum value. Recursive estimates for the unknown
weight vector can be obtained adaptively via, [23]

w(k + 1) = w(k) + µx∗(k)fe(k) (16)

where w(k+1) denotes the weights vector to be computed
at iteration n+ 1, µ is the algorithm step size, and fe(k)
is a scalar function of the estimation error e(k). The
step size µ is related to the rate of convergence: in other
words, how fast the algorithm reaches steady state. The
smaller the step size the longer it takes the algorithm to
converge. This means that a longer reference or training
sequence is needed, which would reduce the payload and,
hence, the bandwidth available for transmitting data.

The most popular variant of equation (16) is the
least mean squares (LMS) algorithm for which the cost
function to be minimized is given by,

J2(k) = E{e2(k)} (17)

where E{.} which results in an estimation error function
fLMS

e (k) given as,

fLMS
e (k) = e(k). (18)
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Hence, the weights update equation (16) for LMS
becomes,

w(k + 1) = w(k) + µx∗(k)e(k). (19)

The cost function that is minimized for the least mean
fourth (LMF) algorithm is given by,

J4(k) =
1
4
E{e4(k)} (20)

which results in an estimation error function fLMF
e (k)

given by,
fLMF

e (k) = e3(k) (21)

In this case, the weights update equation (16) for LMF
becomes,

w(k + 1) = w(k) + µx∗(k)e3(k). (22)

Among other variants is the least mean mixed norm
(LMMN) algorithm for which the cost function to be
minimized is a linear mixture of the cost functions J2(k)
and J4(k) for the LMS and LMF algorithms, respectively.
It is given by,

J(k) =
δ

2
J2(k) +

1− δ
4

J4(k) (23)

where the parameter δ is called the norm mixing parame-
ter such that δ ∈ [0, 1] . This results in an estimation error
function given by,

fLMMN
e (k) = δe(k) + (1− δ)e3(k). (24)

The weights update equation (16) for LMMN be-
comes,

w(k + 1) = w(k) + µx∗(k)
[
δe(k) + (1− δ)e3(k)

]
.

(25)
It is to be noted from equation (25) that the LMMN

algorithm requires at each iteration only two more multi-
plications and one more addition than the LMS algorithm.
Moreover, when δ = 1 equation (25) becomes the weights
update equation for the LMS algorithm. On the other
hand, when δ = 0 equation (25) becomes the wights
update equation for the LMF algorithm. Judicious choice
of δ thereby provides an algorithm with intermediate
performance between that of the LMS and LMF, and a
mechanism to mitigate the problem of instability within
the LMF algorithm. Moreover, for operation in a statisti-
cally non-stationary environment, the mixing parameter δ
may be adapted to match appropriately the properties of
measured signals.

In order to ensure the stability and convergence of
the LMMN algorithm, the adaptive step size parameter µ
should be chosen within the range specified as, [13]

0 < µ <
1

N.E{x2(k)}

[
δ + (1− δ) 1

6.E{n2(k)}

]
(26)

where E{x2(k)} is the input signal power and E{n2(k)}
is the noise power. Analysis of the effect of varying the
adaptive step size parameter µ in [2, 21] showed that µ

should be chosen to be small in order to ensure numerical
stability of the algorithm. Hence, in all the simulation
results presented in Section 5 to follow have obtained
with an adaptive step size value µ =1×10−3.

It is known that the LMF algorithm has better steady
state performance than that of the LMS algorithm for
applications in which the noise has a probability density
function with short tail. However, its stability properties
are worse than those of the LMS algorithm. On the
other hand, the LMMN algorithm has better steady state
performance than the LMS algorithm and better stability
properties than the LMF algorithm [14]. It is for those
reasons that we consider the application of LMMN al-
gorithm to adaptive beamforming for robust interference
suppression. The steady-state performance of the LMMN
algorithm is a function of the norm mixing parameter δ.
The steady-state performance is quantified in terms of the
misadjustment, which is defined as,

M =
1
σ2

n

lim
k→∞

E{w(k)Hx(k)} (27)

The effect of varying the norm mixing parameter δ
on the misadjustment M is studied in Section 5. The
purpose there is to derive an optimal value for δ for which
the misadjustment M reaches a minimum value.

The weight initialization is arbitrary in the LMMN
algorithm which makes it take longer (i.e., requires more
iterations) to converge. To overcome this problem, we
use the sample matrix inversion (SMI) algorithm to ini-
tialize the weights vector in the LMMN update equation
(25). We further improve the performance of the LMMN
algorithm by evaluating the initial weights vector in the
LMMN weights update equation (25). SMI method is
a block-data adaptive algorithm and is known to be
the fastest algorithm for estimating the optimum weight
vector. Because of its high complexity, SMI algorithm
will be used only to estimate the initial weights vector
w(0) which is obtained as,

w(0) = R−1(0)r(0) (28)

where the estimates of the covariance matrix R(0) and
cross-correlation vector r(0) are given by,

R(0) =
B∑

k=1

x(k)xH(k) (29)

r(0) =
B∑

k=1

x(k)d∗(k). (30)

In equations (29) and (30), B represents the block
size and is taken to be small just to ensure that the
effect due to the change in the signal environment during
the block acquisition does not affect the performance of
the SMI algorithm. Also, a large block results in more
matrix inversions making the algorithm computationally
intensive.

The weight initialization as given in equation (28) is
not any arbitrary value but an estimate of the optimum
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value computed by the SMI algorithm. This means that
before the LMMN adaptation begins the antenna beam is
already steered to an approximate direction of the desired
signal, depending on the initial SMI weight estimate.
In this way, the LMMN algorithm takes little time to
converge. Also, after an estimate of the initial weights
is made using the SMI algorithm, the SMI-initialized
LMMN algorithm uses a continuous approach to adapt
itself to the changing signal environment by updating
the weights for every incoming sample. Since the initial
convergence is faster, the SMI-initialized LMMN algo-
rithm takes much less time than the LMMN algorithm
to adapt to the signal environment changes. Therefore,
the SMI-initialized LMMN algorithm is better suited for
continuous transmission systems. Numerical examples in
Section 7 illustrate the improved performance of the
combined LMMN/SMI algorithm in comparison with the
LMMN algorithm.

IV. SIMULATION RESULTS

Both the desired and interfering signals take the form
of a simple complex sinusoidal-phase modulated signal.
By doing so it can be shown in the simulations how
interfering signals of the same frequency as the desired
signal can be separated to achieve rejection of co-channel
interference. For simplicity purpose the reference signal
d(k) is considered to be the same as the desired signal.

A. Optimal Value of Norm Mixing Parameter (δ)
To find the optimal value of the norm mixing pa-

rameter δ, Monte Carlo simulations are carried to plot
the misadjustment M as defined in equation (27) versus
δ. The mixing parameter δ is used to calculate the tap
weights according to the LMMN weight update equation
(25). The LMMN step size is chosen as µ = 1× 10−3.
The mixing parameter δ is chosen as 10 equispaced
points in [0, 1]. The input signal, x(k) is zero-mean and
uniformly distributed with unity power. The noise signal
is also zero-mean and it is obtained by adding a Gaussian
distributed noise of power σ2

n1
= 0.1 and a uniformly

distributed noise of power σ2
n2

= 1.0. The signal-to-noise
ration (SNR) is 10 dB. The values of misadjustment M
are computed at the steady state, after 105 iterations, from
equation (27) by averaging over 50 Monte Carlo trials.
The variation of the misadjustment M with respect to δ
is shown in Fig. 3, where it is clear that the misadjustment
curve has a well defined minimum at δ = 0.40. Therefore
by choosing δ = 0.40, it is expected that the LMMN
algorithm performs better than both LMS (δ = 0) and
LMF (δ = 1) algorithms. Hence, all simulation results
for the LMMN algorithm presented in Section 5 to follow
are carried out with a mixing parameter value δ = 0.40
in order to ensure optimum steady state performance.

B. Beampattern
Consider an array of four elements (N = 4) and

half-wavelength spacing (d = 0.5λ). The array is to

Fig. 3. Misadjustment M vs. LMMN norm mixing
parametr δ (SNR= 10 dB, µ = 1× 10−3).

maximize output radiation towards a source signal arriv-
ing at an angle θS = 0o having a signal-to-noise ratio
SNR = 10dB. The array is also designed to mitigate
an interference signal arriving at an angle θI = −60o

having a signal-to-interference ratio SIR = −10dB. The
number of iterations is 6000 for both algorithms. The
step size for both LMS and LMMN algorithms is taken
as µ = 1 × 10−3 whereas the norm mixing parameter
δ is fixed at its optimum value obtained in Section 4 as
δ = 0.40. Results are presented in Fig. 4 where the solid
line represents the beampattern obtained using the LMS
algorithm and the dashed line represents the beampattern
obtained from the proposed LMMN algorithm with SMI
initialization. It is evident that the pattern nulls in the
case of the LMS algorithm (solid line in Fig. 4) are not
deep enough to cancel the effect of interfering signals.
This means that the LMS algorithm did not converge to
the optimum weights solution within the given number
of iterations. On the other hand, the SMI-initialized
LMMN algorithm (dashed line in Fig. 4) is capable of
generating deep pattern nulls (90dB below the maximum)
which are strong enough to cancel the effect of the
interfering signals. This means that the SMI-initialized
LMMN algorithm converges faster as it reached to the
optimum weights solution within the given number of
iterations. This is due to the fact that the initialization
of the weights vector in equation (25) was obtained from
the SMI algorithm as described in equations (28) to (30).

C. Convergence
Here, simulations are carried out for an array with

four elements (N = 4) and half-wavelength spacing
(d = 0.5λ). The array is to maximize output radiation
towards a source signal arriving at an angle θS = 0o

having a signal-to-noise ratio SNR = 10dB. The array is
also designed to mitigate an interference signal arriving at
an angle θI = −60o having a signal-to-interference ratio
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Fig. 4. Output beampattern using LMS and proposed
LMMN/SMI algorithm (N = 4, d = 0.5λ, SNR = 10
dB, SIR = −10dB, µ = 1× 10−3, δ = 0.40, θS = 0o,
θI = −60o ).

SIR = −10dB. The step size for both LMS and LMMN
algorithms is taken as µ = 1 × 10−3 whereas the norm
mixing parameter δ is fixed at its optimum value obtained
in Section 4 as δ = 0.40. The convergence of the array
weights is studied by plotting in Fig. 5 the magnitude of
the array weights vector w(1) versus number of iterations
for both LMS algorithm and proposed LMMN algorithm
with SMI initialization, respectively. It is evident from
that the array weights obtained using the LMS algorithm
(solid line in Fig. 5) did not converge to the steady state
optimum solution within the given number of iterations.
On the other hand when the proposed SMI-initialized
LMMN algorithm (dashed line in Fig. 5) is used, the
array weights converge to the stable value within the
given number of iterations since the initialization of the
weights vector in the LMMN update equation (25) was
done using the SMI algorithm as described in equations
(28) to (30). This verifies the improved convergence
rate that is achieved when the proposed SMI-initialized
LMMN algorithm is used.

D. Mean Square Error (MSE)

The convergence of the beamforming algorithm is
examined by plotting in Figs. 6 and 7 the Mean Square
Error (MSE) versus number of iterations for both the
LMS algorithm and proposed SMI-initialized LMMN al-
gorithm, respectively. Results of Fig. 7 show a significant
improvement in terms of a reduced MSE when the SMI-
initialized LMMN algorithm is used indicating that it has
a faster convergence rate when compared to the LMS
algorithm of Fig. 6. This verifies the improved accu-
racy that is obtained when the proposed SMI-initialized
algorithm is used.

Fig. 5. Convergence of w(1) using both LMS and SMI-
initialized LMMN algorithm (N = 4, d = 0.5λ, SNR =
10 dB, SIR = −10dB, µ = 1×10−3, δ = 0.40, θS = 0o,
θI = −60o ).

Fig. 6. Mean square error vs. number of iterations for
LMS algorithm (N = 4, d = 0.5λ, SNR = 10 dB,
SIR = −10dB, µ = 1× 10−3, θS = 20o, θI = −40o ).

Fig. 7. Mean square error vs. number of iterations for
SMI-initialized LMMN algorithm(N = 4, d = 0.5λ,
SNR = 10 dB, SIR = −10 dB, µ = 1 × 10−3,
δ = 0.40, θS = 20o, θI = −40o ).

267 ACES JOURNAL, VOL. 23, NO. 3, SEPTEMBER 2008



V. CONCLUSIONS

An accurate and computationally-efficient adaptive
beamforming algorithm based on LMMN with SMI ini-
tialization was presented. The algorithm uses a mixing
parameter δ which controls the proportions of the error
norms and offers an extra degree of freedom within
the adaptation. Monte Carlo simulations show that the
misadjustment curve has a minimum at δ = 0.40 which
means that the LMMN algorithm has an optimum steady-
state performance at this mixing parameter value. The
convergence of the algorithm is further improved by em-
ploying SMI to initialize the weights vector in the LMMN
update equation. Hence, the SMI-initialized LMMN
algorithm provides better steady state performance when
compared to the least mean squares (LMS) algorithm
and better stability properties when compared to the
least mean fourth (LMF) algorithm. Simulation results
obtained show that the proposed SMI-initialized LMMN
algorithm performs better when compared to the other
algorithms. The improved performance of the proposed
SMI-initialized LMMN algorithm takes the form of faster
convergence rate, less mean square error, as well as deeper
nulls placed accurately in the directions of interference
signals. These features make the proposed algorithm
suitable for the design and implementation of practical
smart antenna systems.
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