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Abstract – General purpose computation on graphics 
processing units (GPGPU) is introduced through the 
application of modern interfaces that abstract graphics 
hardware. In order to provide an example of these 
techniques, implementation of an iterative matrix solving 
algorithm is detailed using two interfaces – Stanford's 
BrookGPU and Accelerator from Microsoft Research. 
Performance of the Accelerator implementation is then 
analyzed. 
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I. BACKGROUND 
 
 Graphics processing units (GPUs) utilize a parallel 
pipeline architecture to render graphics onto a 2D screen. 
A traditional GPU consists of vertex processors, a 
rasterizer, and pixel processors, as shown in Fig. 1. The 
vertex processor handles operations such as geometric 
transformations and per-vertex lighting. The rasterizer 
converts the vertex data to a 2D array of pixels, and the 
pixel processors perform texturing and per-pixel lighting 
operations. Early GPUs employed fixed function 
pipelines, in which the vertex and pixel processors 
performed a set of predefined operations. Later GPUs, 
however, incorporated programmable pipelines, in which 
programs called shaders can be passed to the vertex and 
pixel processors. For general purpose applications, most 
computations are performed within pixel shaders. 
 The programmable pipelines incorporate many 
parallel processors that function according to a single 
instruction, multiple data programming scheme. A pixel 
operation, for example, can be applied independently to 
every pixel in a scene. This data-parallel processing 
capability is the primary draw to general purpose 
utilization. In addition to parallel processing, graphics 
hardware also provides a number of useful built-in data 
types and operations. Because the hardware is optimized 
to operate on 3D graphics and lighting, data types include 
multicomponent floating point vectors, and instruction 
sets contain useful operations such as dot products. 

 In the latest generation of graphics hardware, both 
vertex and pixel operations are carried out on processors 
called unified shaders or simply referred to by their 
function – stream processors. This architecture results in 
a more traditional parallel computing environment in 
which data can be spread over a number of identical 
processors. The current generation NVidia 8800GT used 
in this research contains 112 stream processors, with a 
peak performance of over 500 GFLOPS, and a cost of 
less than $250. 
 

 
 

Fig. 1. Traditional GPU architecture. 
 
 Processing general purpose data on a GPU, however, 
has required a creative approach since the hardware is 
specialized for graphics use. In order for data arrays to be 
processed within a GPU, they must be stored as textures 
in graphics memory. In addition, the shader must be 
explicitly loaded into the GPU memory. By rendering a 
quadrilateral, data values and pixels can be mapped to 
one another, and the shader operates on the texture 
values. The rendering phase may be iterated as necessary, 
redirecting the shader output as an input texture. The final 
output may then be read from graphics memory. 
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II. GPU PROGRAMMING 
 
 Until recently, programming graphics hardware 
required the knowledge of a shader language. These are 
languages that can be compiled to run on pixel and vertex 
processors, such as the OpenGL Shading Language 
(GLSL), Microsoft's High Level Shader Language 
(HLSL), and NVidia's C for graphics (Cg). GLSL is a 
cross platform shading language, due to its OpenGL 
heritage. HLSL is used within the Windows operating 
system, as it links to DirectX. Cg, however, is unique in 
that it can target either OpenGL or DirectX as a compiler 
option. These languages are common in graphics 
programming, and they require extensive knowledge 
about the graphics processes as described in the previous 
section as well as the selected graphics interface – 
OpenGL or DirectX. While these languages are a great 
improvement over hardware-specific assembly language, 
a higher level of graphics hardware abstraction is 
necessary for general purpose computation. 
 The ability to perform general purpose computations 
on graphics hardware without extensive background in 
graphics programming is now possible due to the 
abstraction provided by modern interfaces including 
Brook for GPUs (BrookGPU) from Stanford University 
and Accelerator from Microsoft Research. BrookGPU 
and Accelerator extend C and Microsoft C Sharp (C#) 
respectively with new syntax and data types allowing 
data to be transferred to and from the GPU and shaders to 
be loaded and configured as necessary without 
complication. An example program will be shown for 
both, and a brief performance analysis will be conducted 
on the Accelerator program. 
 

III. JACOBI ALGORITHM 
 
 The Jacobi iterative matrix solving algorithm has 
been written for both the CPU and GPU as a 
demonstration. The algorithm computes u  from 
M u f  = , and can be explored by solving for u1. 
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Let D  be a diagonal matrix that holds only the main 
diagonal of M . The above expression may be written as, 
 

1 11 11 1 1N 1N N
1

11

( ) ( )f M D u M D u
u

D
− − − − −

= . 

 
The RHS of this equation can be used to update the LHS 

value, which results in the following iterative matrix 
equation. 
 

1 1 1( )n nu D f D M D u+ − −= − −  
 
 M ′  can be defined as M D−  for simplicity, and the 
elements of D  can be stored in the vector d . This 
allows the following expression, in which “÷” represents 
an element-by-element division. 
 

1 ( )n nu f M u d+ ′= −  ÷  
 
 The procedure is performed by a matrix-vector 
multiplication, followed by an element-by-element vector 
subtraction, and then an element-by-element vector 
division. The equation is successively evaluated for 1nu + , 
and at the end of each iteration, the components of u  are 
updated simultaneously [1]. 
 The advantage of Jacobi iteration in this 
demonstration is that the evaluation of u  components 
can be performed independently, in parallel between 
updates. The algorithm may be summarized in the 
flowchart shown in Fig. 2. 
 

 
 
Fig. 2. Iterative algorithm. 
 
 In this research, the CPU and GPU Jacobi solvers are 
applied to a matrix generated by a finite element 
program. Other numerical methods may utilize a 
completely different approach. In a finite difference 
analysis, for example, the only elements contributing to 
the value of an unknown are its neighbors, so the 
algorithm only examines a point's neighbors to update its 
value, rather than an entire matrix row. A performance 
increase has been demonstrated in finite difference time 
domain by applying GPU programming in this way [2]. 
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IV. BROOKGPU 
 
 BrookGPU was developed at Stanford University as 
an offshoot of the Brook stream processing language, 
created for the Merrimac streaming supercomputer. 
Brook extends C with the concepts of streams and 
kernels. A stream is similar in concept to an array, and 
can contain float values as well as the multicomponent 
vector types – float2, float3, and float4 as shown in Fig. 
3. Data may be passed from an array to a stream using the 
streamRead operator and vice-versa using streamWrite. 
Other than these operators, streams may only be accessed 
in functions called kernels. Within a kernel, stream 
operations are performed in parallel, and the concept of 
stream shape must be considered to ensure proper 
operation [3]. As an example, the following program 
segment contains the Jacobi iteration using BrookGPU. 
 The first step in writing a BrookGPU program is to 
define and initialize the stream. Data arrays declared 
outside the provided program segment are read into the 
streams using the StreamRead function. For clarity, all 
streams use unmodified names, while arrays used by the 
CPU are given a suffix – i.e. d is a GPU stream while 
d_array is stored in system memory. The Jacobi 
algorithm is divided into four kernels within the main for 
loop. First a multiplication is performed in which each 
row of matrix M is multiplied element-by-element with 
the row vector u. The resulting temp matrix is sent to a 
reduction kernel, in which its rows are summed yielding a 
column vector. This vector represents the matrix-vector 
product, which is then transposed to a row vector. The 
statement indexof row.yx returns an index of the current 
row element with x and y switched, such that row[x,y] = 
column[y,x]. The final kernel updates by evaluating the 
statement of row vectors element-by-element. After the 
iterations are complete, the computed value of u is 
written back to a standard array from the GPU. 
 A BrookGPU source file containing streams and 
kernels must be converted to C and shader code using the 
brcc compiler. After C compilation, program execution 
calls upon the Brook Runtime, which controls 
implementation of the kernels on the GPU. Compiler 
switches applied to brcc allow conversion to Cg or HLSL 
and optimizations for ATI and nVidia hardware. The last 
official release of BrookGPU is v0.4, released October 
15, 2004, so development using modern hardware and 
drivers may not be efficient. The Jacobi program 
produced oddly scaled results until graphics drivers were 
updated. Even after the driver update, however, the 
scaling problems would return for all but impractically 
small matrix sizes. For this reason, a performance 
evaluation will not be conducted on the BrookGPU 
Jacobi implementation. At the time of writing, a long 
awaited update (billed as the v0.5 “test release”) has been 
made available for download, but has not been tested in 
this project. 

Main Program Segments: 
 

// DEFINE STREAMS 
float d<1,n>; //row 
float f<1,n>; //row 
float u<1,n>; //row 
float columnProduct<n,1>; //column 
float rowProduct<1,n>; //row 
float M<n,n>; //matrix 
float temp<n,n>; //matrix 
 
// INITIALIZE STREAMS 
streamRead( d, d_array ); //diagonal 
streamRead( f, f_array ); //forcing vector 
streamRead( M, M_array ); //matrix M 
streamRead( u, u_array ); //initial approx. 
  
// RUN JACOBI ITERATIONS 
for( i=0; i<iterations; i++ ) 
{ 
 mul( M, u, temp ); 
 sum( temp, columnSum ); 
 transpose( columnProduct, rowProduct ); 
 update( d, f, rowProduct, u ); 
} 
 
streamWrite( u, u_array ); //output u 
 
Kernels: 
 

kernel void mul( float a<>, float b<>, out float c<> )  
 c = a * b; 
 
reduce void sum(  float a<>, reduce float r<> )  
 r += a; 
 
kernel void transpose(float column[][], out float 
row<>)  
 row=column[ indexof  row.yx ];  
 
kernel void update( float diagonal<>, float forcing<>,  
                                 float product<>, out float new<> )  
 new = ( forcing – product ) / diagonal; 

 
Fig. 3. Sample from BrookGPU Jacobi program. 
 
 

V. ACCELERATOR 
 
 Accelerator was produced by Microsoft Research, 
and is designed to abstract hardware such as GPUs and 
cell processors. The current implementation provides 
abstraction for GPGPU programming on C#, and 
correspondence with a developer on the project suggests 
that a native C++ version may eventually be released. 
Accelerator provides a ParallelArray class that contains 
all necessary functions – I/O, element operations, 
reductions, transformations, and linear algebra. Linear 
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algebra routines include vector and matrix 
multiplications. The ParallelArray class also contains 
several subclasses such as IntParallelArray and 
Float4ParallelArray which define data types for single 
and multicomponent parallel data. Unlike BrookGPU, the 
shaders are not explicitly separated in the form of kernels. 
Instead, pixel shaders are created from the Accelerator 
operations automatically. This does not allow as much 
control over the underlying shaders, but it allows them to 
be created and optimized by the compiler at runtime [4]. 

In the Accelerator program of Fig. 4, the GPU must 
be initialized before additional calls to the ParallelArray 
class, which has been shortened to PA for simplicity. 
Four arrays are read into disposable float parallel arrays, 
which must be disposed at the end of the program. The 
Jacobi iteration is straightforward: the matrix-vector 
product is performed using the InnerProduct function of 
the ParallelArray class, and the new value of u is 
calculated as in the BrookGPU program. An additional 
step is required for memory management. Every time 
PA.Evaluate() is called, a new array is allocated on the 
GPU. The old array is explicitly disposed with each 
iteration in order to free memory. At the completion of 
the iterations, the ToArray function is used to recover the 
computed value of u, and all other memory allocated on 
the GPU is freed.  
 
 
// INIT & UPLOAD TO GPU 
PA.InitGPU(); 
DFPA d = new DFPA( d_array ); 
DFPA f = new DFPA( f_array ); 
DFPA M = new DFPA( M_array ); 
DFPA  u = new DFPA( u_array ); 
DFPA uNew = null; 
 
// BEGIN JACOBI ITERATIONS 
for( i=0; i<iterations; i++ ) 
{ 
 // MULTIPLY MATRIX BY u 
 FPA product = PA.InnerProduct( M, u ); 
 // UPDATE u 
 uNew = PA.Evaluate( ( f - product ) / d ); 
 u.Dispose(); 
 u = uNew; 
} 
 
// DOWNLOAD RESULT FROM GPU & CLEAN UP 
PA.ToArray( u, out u_array ); 
d.Dispose(); 
f.Dispose(); 
M.Dispose(); 
uNew.Dispose(); 
PA.UnInit(); 
 
Fig. 4. Sample from MSR Accelerator  Jacobi program. 
 

Programming with accelerator requires Microsoft 
Visual Studio or Visual C# Express (available for 
download) and naturally targets the DirectX graphics 
interface. No additional steps are required in the 
compilation process other than including the 
accelerator.dll file within the project. A disadvantage, 
however, is that Accelerator ties to DirectX through the 
.NET framework requiring a Microsoft language such as 
C#. Interfacing existing programs to Accelerator involves 
use of the .NET framework, or by writing to a data file 
that can be imported by an Accelerator program. The 
current version of Accelerator – available from 
research.microsoft.com – is v1.1, last updated July 9, 
2007. 
 

VI. ELECTROSTATIC EXAMPLE 
 

As a practical example of electromagnetics 
computations on GPUs, a simple electrostatic problem 
domain is studied. Consider a rectangular cross-section. 
The sides and bottom of this domain are maintained at 
ground potential, while the top is excited with the 
positive half-cycle of a unit-sinusoidal potential source. 
The cross-section is discretized by a triangular mesh [5], 
and a nodal finite element analysis is performed. 

Although the Jacobi program is a proof-of-concept 
rather than an optimized solver, it has been successfully 
applied to the matrix equation resulting from the finite 
element analysis. For the finer mesh of Fig. 5, the RMS 
error present between the computed and theoretical 
potentials is 0.0075. The error between the computed 
CPU and GPU results is negligible, suggesting no 
significant loss of precision between the two architectures 
in this case. 
 

VII. PERFORMANCE ANALYSIS 
 
 Performance of the GPU (using Accelerator) and 
CPU Jacobi algorithm implementations was examined. 
Various mesh densities provided differing numbers of 
unknowns in order to compute speed factors for varying 
matrix sizes. The speed factor for this application is 
defined as the ratio of CPU to GPU processing time. 
Sufficient parallel computation must be performed in 
order to overcome the communication and setup penalties 
of the GPU. 

For consistency, the initial approximation is set to 
0.5 for each unknown. While no test for convergence is 
employed in the current version of the program, the 
number of iterations chosen to be ten times the number of 
unknowns for each mesh in order to assure convergence 
without an explicit test. For trials of less than 500 
unknowns, the communication and set up time required 
by the GPU outweighs any performance increase, which 
can be noticed from the data presented in Figs. 6 and 7. 
The speed factor increases to 21.1 for the case of 4000 
unknowns, beyond which the CPU runs were not feasible 
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on the test machine. 

 

 
Fig. 5. Electrostatic potential in rectangular tube using 
different meshes. 
 

 
Fig. 6. Processing time for Jacobi iterations. NVidia 
8800GT GPU, 2.2GHz Athlon 64 CPU. 

 
Fig. 7. Speed factor (CPU time / GPU time). NVidia 
8800GT GPU, 2.2GHz Athlon 64 CPU. 

Figure 8 illustrates the performance increase by 
generation of graphics technology using a benchmark of 
2000 unknowns. The devices used in this graph spanned 
from a GPU produced in October 2002 (earliest 
technology compatible with Accelerator) to a current 
generation one. All other GPU results were produced 
using an NVidia 8800GT, while CPU results were 
produced using a single core of a 2.2GHz AMD Athlon 
64 processor. 
 

 
Fig. 8. Accelerator benchmark. 
 

VIII. CONCLUSIONS 
 
 General purpose computation on graphics processing 
units is now available to scientific and engineering 
programmers through the rise of high level interfaces 
such as BrookGPU and Accelerator. Through the 
implementation of the Jacobi algorithm, both BrookGPU 
and Accelerator syntax and programming issues have 
been discussed. Performance analysis of the Accelerator 
program has provided insight on the current power and 
continuing performance increases available through the 
use of GPUs. 
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