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Abstract─ In this paper a fast integral equation 
method, termed IE-FFT, is developed, analyzed 
and applied to the electromagnetic (EM) solution 
of scattering problems. The methodology is 
developed for the Method of Moments (MoM) 
solution of the Electric Field Integral Equation 
(EFIE) on electrically large Perfect Electric 
Conducting (PEC) structures. Similar to other Fast 
Fourier Transform (FFT) based algorithms, IE-
FFT uses a Cartesian grid to drastically decrease 
memory storage and speed up the matrix-vector 
multiplication. The IE-FFT algorithm employs two 
discretizations, one for the unknown current on an 
unstructured triangular mesh and the other on a 
uniform Cartesian grid for interpolating the 
Green’s function. The uniform interpolation of the 
Green’s function allows the fast computation of 
well-separated MoM interaction terms with the aid 
of a global FFT. Nevertheless, the coupling 
between near-interaction terms should be 
adequately corrected. The major contribution of 
this paper lies on the Lagrangian interpolation of 
the Green’s function. This not only allows simple 
and efficient algorithmic implementation, but also 
naturally suggests a rigorous error analysis of the 
algorithm. The efficiency of the method is based 
on the Toeplitz structure of the interpolated 
Green’s function. Therefore, it is applicable on 
both asymptotically-smooth and oscillatory 
kernels arisen in static and wave propagation 
problems, respectively. Through numerical 
simulations of electromagnetic wave scattering 
from a PEC sphere, the complexity of the IE-FFT 
algorithm is found to scale as O(N1.5)  and 
O(N1.5logN) for memory and CPU time, 

respectively. Various numerical results verify the 
high accuracy and efficiency of the method. 
  
Index Terms─ Methods of Moment, Numerical 
method, Fast Fourier Transform, Electromagnetic 
Scattering, and Integral Equation. 
 

I. INTRODUCTION 
The Method of Moments (MoM) solution of 

surface Integral Equations (IE) has been proven 
very successfully in analyzing electromagnetic 
radiation and scattering from arbitrarily shaped 
conducting objects. A conventional MoM process 
produces high-accuracy results for both near- and 
far-field quantities, but requires prohibitive O(n2) 
memory and fill-in CPU time. This paper 
introduces yet another approach on reducing the 
computational burden of MoM while maintaining 
an explicit error control of the method. 

During the last decades a large number of 
methods have been proposed to reduce the 
computational complexity and memory 
requirement of IE based methods. Perhaps the 
most successful and popular is the Fast Multipole 
Method (FMM) and its multilevel implementation 
MLFMM [1] – [4]. Careful implementations of 
MLFMM achieve O(N) and O(NlogN) 
complexities for memory and matrix-vector-
multiplication time [2]. Unfortunately, the strong 
reliance of multipole-based methods on kernel-
specific mathematical apparatus makes the 
methods inadequate for general purpose kernel-
independent solvers.  

Unlike FMM, a number of recent developments 
have focused on less kernel-dependent fast integral 
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methods. Such methods are the IES3 [6], IE-QR 
[7], [8] and Adaptive Cross-Approximation (ACA) 
[9], [10] algorithms. These are “algebraic” 
methods, in the sense that they consider the IE 
matrix from a linear algebra point of view. The 
computational reduction is achieved by 
compressing, in a multilevel fashion, the rank-
deficient sub-matrices of geometrically well-
separated interactions. 

Another class of fast IE methods, which directly 
relates to the proposed method, is the grid-based 
or FFT-based category. The well-known 
precorrected-FFT (p-FFT) [11], [12] and the 
Adaptive Integral Method (AIM) [13], [14] are 
among the most popular and well documented. 
Both p-FFT and AIM approaches are of ( )1.5O N  
for storage and O(N1.5logN) for matrix-vector 
multiplication. Both approaches are based on an 
“equivalent” source approximation. Namely, the 
unstructured grid sources are mapped onto a 
uniformly distributed set of equivalent multipole 
moment sources. To establish “equivalence”, the 
fields of the two sets of sources need to be 
matched at selected locations. Recently, a fast, 
high-order algorithm, based on “two-face” 
equivalent source approximation, was proposed in 
[15]. The fast, high-order algorithm achieves 
( )6 / 5 logO N N  to ( )4 / 3 logO N N  by placing 

equivalent sources only on the faces of cubic cells. 
Nevertheless, the method is strongly dependent of 
the integral kernel due to the use of the addition 
theorem. The Sparse-Matrix/Canonical-Grid 
(SM/CG) method of [16] is yet another grid-based 
fast IE method. Unlike previous mentioned 
methods, The SM/CG method does not utilize 
equivalent sources, but employs the Taylor 
expansion of the Green’s functions on a uniformly 
spaced canonical grid. Subsequently, the 
impedance matrix is solved by an FFT-based 
iterative procedure based on the number of Taylor 
expansion terms. The SM/CG method does require 
the detail knowledge of the integral kernel. Due to 
the Toeplitz symmetry, the memory complexity of 
SM/CG is ( )1.5O N . Gedney in [17] proposed the 
Quadrature Sampled Pre-Corrected Fast-Fourier 
Transform (QS-PCFFT) algorithm to project the 
unknown currents to a uniform grid.  The QS-
PCFFT algorithm evaluates the discrete Fourier 
transform of the current directly using 

discontinuous FFT, which is based on quadrature 
sampling of the currents. The algorithm provides 
controllable accuracy and exponential 
convergence. Finally, the Green’s function 
interpolation together with the FFT (GIFFT) [18] 
algorithm has developed for arrays with arbitrary 
shape. The GIFFT algorithm uses an array mask 
function to identify the array boundaries and 
specify the domain on which the Green’s function 
is interpolated. The FFT is used to accelerate the 
matrix-vector products in an iterative solver. 
Consequently, the GIFFT algorithm reduces 
storage and solution time. For volume IE methods 
and planar structures, all grid or FFT-based 
algorithms end up with ( )O N  complexity for the 
memory.  

The IE-FFT algorithm described in this paper is 
in essence the same as the GIFFT algorithm, 
although developed completely independent. Its 
basic attributes can be summarized in its 
simplicity, error control and generality due to the 
Lagrangian interpolation of the kernel, and 
efficiency due to the FFT. Before start 
summarizing the approach, it should be 
emphasized that the choice of Lagrange 
interpolation of the Green’s function was based on 
the simplicity. Only minor modifications are 
needed to extend to other standard interpolation 
schemes such as Hierarchical Lagrangian, 
Newton, trigonometric, etc. The proposed 
approach is more versatile than the FMM and is 
also simpler than other grid-based methods. The 
less-kernel dependent algorithm is easily applied 
to various applications with little modification. For 
fast evaluation of integral operators, simple 
polynomial interpolation of the integral kernel is 
constructed on a regular grid. The IE-FFT 
algorithm employs algebraically simple Lagrange 
polynomials on each 3-D Cartesian cell. 
Regardless of the order of the polynomials and the 
electrical size of the scatterer, the sampling 
segments per wavelength should be kept constant. 
In accordance to the Nyquist sampling theorem, 
the proposed algorithm for 3-D surface IE leads to 
( )1.5O N  complexity for the memory requirement. 

Unlike p-FFT and AIM methods, uniform grid 
does not represent “equivalent” source, but 
correspond to interpolation tools for the Green’s 
functions. The error analysis of IE-FFT algorithm 
is considerably easier than other grid-based 
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methods due to Lagrangian interpolations. Upper 
bounds of the Green’s function interpolation error 
versus the sampling segments are derived and 
verified for arbitrary polynomial orders. High 
order polynomials or more sampling segments for 
the interpolation could be chosen to get improved 
accuracy. The trade-off could be straightforwardly 
controlled over the accuracy and efficiency of the 
IE-FFT algorithm. Finally, the IE-FFT algorithm 
demonstrates ( )1.5O N  complexity and achieves 
good accuracy for solving 3-D arbitrarily shaped 
PEC scattering structures. Since the proposed 
method shares many common features with other 
FFT based methods, it is expected to achieve 
almost linear complexity when used to accelerate 
planar (2.5D) multilayer IE solvers or volume 
integral equations (VIEs).   

The outline of the paper is as follows. For 
completeness a short summary of the EFIE 
formulation for 3-D PEC scattering problems is 
described in Section II. The algorithmic 
development and details of the IE-FFT algorithm 
are presented in Section III. Section IV is devoted 
to the error analysis of the algorithm, and to 
demonstrate the error control of interpolating the 
Green’s function. To validate the theory and 
analytical developments, scattering from a PEC 
sphere is first considered in Section V. Through 
numerous numerical experiments, the accuracy 
and performance of the current approach are 
demonstrated. Finally, the proposed method is 
tested, and compared with other methods, in an 
example involving the scattering from a generic 
battleship. Concluding remarks are discussed in 
Section VI. 
 

II. FORMULATION 
Let’s start with the discrete Galerkin statement 

for the electric field integral equation (EFIE), find 
( ) ( )1/ 2 ;h hJ r −

Γ∈ ⊂ ΓX H div  such that 

( ) ( ) ( )

( ) ( ) ( )

2 2 2
0

2 2

;

                   ;
h h

h h

h h

h h

k r g r r J r dx dx

r g r r J r dx dx

λ

λ
Γ Γ

Γ Γ
Γ Γ

′ ′ ′⋅

′ ′ ′ ′−

∫ ∫

∫ ∫div div
 

 ( ) ( ) 20

0

,
h

inc
h h h

jk
r E r dxλ λ

η Γ

=− ⋅ ∀ ∈∫ X ,  (1)

where hΓ  denotes the facetized surface of the PEC 
object. hX  is the finite dimensional trial and 

testing spaces, and 

 ( ) ( )( ) ( ){ }21/ 2 2 2; ,v v L v L−
Γ ΓΓ = ∈ Γ ∈ ΓH div div  is 

the correct spaces where the unknown currents 
reside [20].  The unknown electric current density 
is denoted by ( )hJ r  and the testing function is 

( )rλ . r  and r′  are observation and source points, 
respectively, and ( )incE r  is the incident electric 
field. In the present application, the free-space 
Green’s function ( );g r r′  is considered. The free 
space wave number and characteristic impedance 
are respectively denoted by 0k  and 0η . 
Throughout the paper the j te ω  time convention is 
assumed, and j  denotes the imaginary unit, except 
when stated otherwise. From the discrete Galerkin 
statement a system of equations is obtained by 
expanding trial and testing functions into a set of 
basis functions 

 ( ) ( )
1

0
,

N

h i i
i

J r J rα
−

=

′ ′= ∑  (2) 

where ( )′r sα  are surface div-conforming vector 
Rao-Wilton-Glisson (RWG) basis functions [19]. 
Finally, the resulting matrix equation can be 
written as  

 =Z J Vi . (3) 
The entries of the impedance matrix Z and those 
of the right-hand vector V  are given by 

 2
0 , 0 , 1ij ij ijZ k A D i j N= − ≤ ≤ − , (4) 

where 

 
( ) ( ) ( )

( )( )

( ) ( ) ( )
( )( )

2 2

supp supp

2 2

supp supp

;

;

i j

i j

ij i j

ij i j

A r g r r r dx dx

D r g r r r dx dx

α α

α α

α α

α αΓ Γ

′ ′ ′= ⋅

′ ′ ′ ′=

∫ ∫

∫ ∫div div
(5) 

and 
 ( ) ( )

( )

20

0 supp j

inc
i i

jk
V r E r dx

α

α
η

= − ⋅∫ , (6) 

where N  is the number of unknowns, notice that 
supp() indicates the finite support of every non-
boundary edge related basis function. 
 

III. IE-FFT ALGORITHM 
As stated in the introduction, the heart of the 

IE-FFT algorithm is the uniform Cartesian 
interpolation of the Green’s function. The IE-FFT 
algorithm starts by constructing a rectangular 
bounding box that encloses the entire 
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computational domain. This box is the domain for 
interpolating the Green’s functions. The key 
outcome of the Green’s functions interpolation is 
the decoupling of the sources and the receivers. 
This is the same idea as the FMM, but instead of 
approximation the Green’s function through the 
spherical multipole expansion, the Green’s 
function is expanded into a Cartesian Lagrange 
polynomial. Therefore the Green’s function can be 
expressed as 

 ( ) ( ) ( )
0 1 1

, ' '
0 0

; ,
g gN Njk r r

p p
n n n n

n n

eg r r r g r
r r

β β
− −′− −

′= =

′ ′=
′− ∑ ∑  (7) 

where p  is the order of Lagrange polynomial 
interpolation, gN  is the number of grid points, p

nβ  
and p

nβ ′ are the thp  order Lagrange interpolation 
basis functions for grids r  and r′ , ,n ng ′  are the 
Lagrange coefficients of the Green’s function, and 
n  and n′  are dimensional indexes of grids r  and 
r′ , respectively The explicit forms of p

nβ  can be 
found in a number of elementary interpolation 
books such as [21]. In equation (7), the source and 
observation terms for the Lagrange interpolation 
basis functions are completely decoupled. Having 
obtained the product form of ( );g r r′  the coupling 
integrals of (5)  are now written as 

    
( ) ( ) ( ) ( )

( )( )

1 1
2 2

, '
0 0supp supp

g g

i j

ij N N
p p

i n n n n j
n n

A

r r g r r dx dx
α α

α β β α
− −

′
′= =

⎡ ⎤
′ ′ ′⋅ ⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑∫ ∫

 , (8) 

and 
( )

( )

( ) ( )
( )( )

( )
( )

supp

1 1
2 2

, '
0 0supp

      

i

g g

j

ij i

N N
p p

n n n n j
n n

D r

r g r r dx dx

α

α

α

β β α

Γ

− −

′ Γ
′= =

⋅

⎛ ⎞⎡ ⎤⎜ ⎟′ ′ ′ ′⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

∫

∑ ∑∫

div

div

, (9) 

respectively. Interchanging summation and 
integration orders, and grouping primed and 
unprimed variables, leads to 

( ) ( )( ){
( )

( ) ( )( )
( )

1 1

, '
0 0 supp

2 2

supp

                                

g g

i

j

N N
p

ij i n n n
n n

p
n j

A r r g

r r dx dx

α

α

α β

β α

− −

′= =

′

⋅

⎫⎪′ ′ ′ ⎬
⎪⎭

∑ ∑ ∫

∫
, (10) 

and  

( ) ( )( ){
( )

( ) ( )( )
( )

1 1

, '
0 0 supp

2 2

supp

                                

g g

i

j

N N
p

ij i n n n
n n

p
n j

D r r g

r r dx dx

α

α

α β

β α

− −

Γ
′= =

′ Γ

⋅

⎫⎪′ ′ ′ ′ ⎬
⎪⎭

∑ ∑ ∫

∫

div

div

. (11) 

The product forms of impedance matrix terms in  
(10)(11) are valid for all interactions, except the 
ones that reside on the same Green’s function cell. 
At these location the Green’s function coefficient 
matrix , 'n ng  is singular, thus need to be 
appropriately corrected. In summary the IE-FFT 
algorithm proceeds in four steps: 
1) Represent free-space Green’s function as 

simple Lagrange polynomials. 
2) Construct four projection matrices Π  using 

the EFIE formulation. 
3) Correct entries from near-interaction elements. 
4) Accelerate the matrix-vector products using 

the global FFT. 
 

 
 

Fig. 1. Two discretizations for a problem domain. One 
is the regular triangular mesh (inside the boundary Γh   
on the scatterer) for the unknown surface current 
induced by the incident field. The other is a uniform 
Cartesian grid of the rectangular box (ΓH  ) enclosing 
the problem domain. 
 
 
The detail of the IE-FFT algorithm could be 
shown below. 

A. Representation of Green’s function using 
simple Lagrange polynomials 

To interpolate the 3-D free-space Green’s 
function, a rectangular box with dimension 

x y zL L L× ×  in the Cartesian coordinate is 
constructed first. The rectangular bounding box 
that encloses the problem domain, as shown in 
Fig. 1, will be considered as the domain of the 
Green’s function. The bounding box is uniformly 
interpolated with simple Lagrange polynomials. In 
the current implementation, the sampling segment 
between two grid points is typically set to 
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be / 7d λ= . The number of sampling points affects 
the accuracy of the approximation, and need to 
exceed Nyquist sampling rate for good accuracy. 
In equation (7), the number of grid points is 

g x y zN N N N= × ×  where /x xN L d= , /y yN L d= , 
and /z zN L d= . Also, the dimensional indexes 
could be expressed as ( ), ,n i j k=  and ( ), ,n i j k′ ′ ′ ′=  
where 0 , xi i N′≤ < , 0 , yj j N′≤ < , and 
0 , zk k N′≤ < . The thp  order interpolation basis 
functions p

nβ  are the 3-D tensor products form of 
one-dimensional piecewise Lagrange polynomials 
on a Cartesian grid 
 ( ) ( ) ( ) ( )p p p p

n i i kr x y zβ β β β= ⋅ ⋅ . (12) 
Combined with equation (7) and(12), the Green 
function is written in the matrix form 
 ( ) ( )( ) ( );

T
g r r r r′ ′β G βi i , (13) 

where 

 

( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

g

x y z

p p p
0 1 N 1

Tp p p
0 0 0
p p p

1 0 0

p p p
N 1 N 1 N 1

r r r r

x y z
x y z

x y z

β β β

β β β
β β β

β β β

−

− − −

⎡ ⎤= ⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

β

,(14) 

 

, , ,

, , ,

, , ,

g

g

g g g g

0 0 0 1 0 N

1 0 1 1 1 N

N 0 N 1 N N

g g g

g g g

g g g

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

G . (15) 

For general Green’s function, one needs to store 
the entire G , resulting in a ( )2

gO N  storage. 

Fortunately, most of the Green’s functions 
appearing in static or electromagnetic field 
computations are of a difference-form. Namely, 
( ) ( );g r r g r r′ ′= − . Naturally, such integral kernels 

would lead to a 3-D block-Toeplitz structure for 
equation . For a 3-D block-Toeplitz matrix, we 
only need to store g2N  entries of the G . As it was 
mentioned above, the numerical values of n ng ′−  for 
n n′=  are infinite. For simplicity, they are set to 
zero, and the near field contributions will be 
appropriately corrected during the correction step. 

B. Representation of П matrices 
There are two projection matrices needed in the 

IE-FFT algorithm, as evidenced from equation  

(10) and (11). They are: 
( )
( )

( )

( ) ( ) ( )
g

0

1 p p p 2
A 0 1 N 1

N 1

r
r

r r r dx

r

α
α

β β β

α

−
Γ

−

⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎡ ⎤= ⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∫Π ,  (16) 

 
and 

( )
( )

( )

( ) ( ) ( )
g

0

1 p p p 2
D 0 1 N 1

N 1

r
r

r r r dx

r

α
α

β β β

α

Γ

Γ
−

Γ

Γ −

⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎡ ⎤= ⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∫

div
div

Π

div

 (17) 

respectively. Notice that AΠ  is a vector-valued 
matrix. Both matrices (16) and (17) are non-
symmetric and more importantly sparse, since 
both RWG and the Lagrange interpolation basis 
functions have finite support. In other words, each 
RWG basis function is just projected onto only a 
few Lagrangian cells. Therefore, the memory 
requirement and CPU time of computing these 
matrices are ( )O N . 

C. Correction of matrix entries for touching or 
overlapping cells 

From equation (5), the accuracy of approximating 
ijZ  by the IE-FFT algorithm depends on the distance 

between thi  basis and thj  testing functions. These 
functions are separated at least by αλ  (we 
chose 0.2α = ) to assure accuracy in Fig. 2. In other 
words, the coupling between near-interaction terms 
should be adequately corrected. These entries should be 
substituted by accurate ones, which are computed by 
the conventional MoM technique. These entries should 
be corrected for fast computation before the matrix-
vector products are performed. Finally, the correction 
entries from the interaction between thi  and thj  RWG 
basis functions are written as 

 
( ) ( )

( ) ( )

2
0

          

Tcorr MoM
ij ij A IJ AiI Jj

T
D IJ DiI Jj

Z Z k G

G

= − Π Π

+ Π Π
, (18) 

where 0 i N≤ < , neigj C∈ , and neigC  is the set of 
the near-interaction elements. The coupling 
between basis function i and j  will be corrected 
by (18) if they are separated less than 0.2λ  (our 
choice). The correction matrix corrZ  is 
unquestionably sparse. In the current 
implementation, the memory of correction matrix 
does not depends on the sampling segment of 
Cartesian grid and the order of Lagrange 
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interpolation basis functions, used to interpolate 
the Green’s function.  

D. Fast matrix vector multiplication 
Let ijZ  represent one entry of the impedance 

matrix and the matrix-vector product is written as  

 ,
N 1

i ij j
j 0

y Z x 0 i N 1
−

=

= ≤ < −∑ .             (19) 

Combined with IE-FFT algorithm, the matrix-vector 
products could be rewritten as 

( ) ( )( ){ }
( ) ( )( ){ }

2
0     

     

corr

T

A A

T
D D

y Z x

k IFFT FFT G FFT x

IFFT FFT G FFT x

= ⋅

+ Π ⋅ ⋅ Π ⋅

−Π ⋅ ⋅ Π ⋅

.      (20) 

From the above expression, the significant 
saving of memory due to the ( )O N  complexity of  

corrZ  and Π  matrices is clearly shown. Note that 
the FFT of the G  matrix is computed only once. 
The memory requirement of the coefficient is 
( )1.5O N  complexity. However, the FFT can be 

applied to speed up matrix vector multiplications 
significantly. It leads to ( )1.5 logO N N  complexity.  

 
 

 
Fig. 2 A PEC sphere with two discretizations, a 
triangular mesh and a uniform Cartesian grid. Note that 
in the figure, d is the sampling resolution, C is the size 
of the Cartesian element, α  is a constant used to define 
the local correction region, and λ  is the wavelength. 
 
 
 

IV. ERROR CONTROL 
The only additional approximation of IE-FFT 

algorithm compared to the conventional MoM 
comes from the interpolation of the Green’s 
function. Consequently, in order to assess the 
accuracy of the IE-FFT algorithm alone, the error 
analysis of the Green’s function interpolation need 
to be considered. This section provides an error 
bound, which will guide the practical 
implementation of the IE-FFT algorithm for 3-D 
PEC scattering problems. 

A. thp order interpolation 

Consider an analytical function ( ),xf  bxa ≤≤ . 
A unique thp  order interpolation [ ] ( ),xf p  bxa ≤≤  
can be determined with 
 [ ]( ) ( ) bxaxfxf iii

p ≤≤= ,  px ,,0=  (21) 
Moreover, by Cauchy reminder theorem [21] 

for polynomial interpolation, we have  
 [ ] [ ] ..,,,, tsbabax ∈∃∈∀ ξ  

( ) [ ]( )
( )( ) ( )

( )
( ) ( )ξ110

!1
            +

+

−−−
=

−

pp

p

f
p

xxxxxx
xfxf

,  (22) 

where ( ) ( )xf p 1+ denotes the ( )1+p derivative of 
( )xf  at x . Subsequently, the following error 

bound is valid 

 

( ) [ ] ( )
( )

( )

( ) ( )
( )

1

0

max max
           

1 !

p

p
p

ia x b a bi

f x f x

f x

x x f

pf x
ξ

ξ+
≤ ≤ ≤ ≤=

−
≤

−
⋅

+

∏
. (23) 

 

B. Free space Green’s function and its 
derivatives 

For free space scattering applications, 

( )xf ( )
x

e xjk0−

= is considered. Note here that in 

order to fulfill the assumption that ( )xf is to be 
analytic, separation by αλ to be called well-
separated should be persevered. The derivatives of 
( )xf are summarized below 
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( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

0

0

0 0

0 0

0

0 0

1
0

2
2

0 2

3
3

0 0 2

3

4 2
4

0 0 2

0 0

1

1 1

1 1 3

2

1 1 3

1 3

jk x

jk x

jk x jk x

jk x jk x

jk x

jk x jk x

ef x
x

ef x jk
x x

e ef x jk
x x xx

e ef x jk jk
x x x xx

e
xx

e ef x jk jk
x x x xx

jk jk
x x

−

−

− −
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C. Upper error bound in the IE-FFT 
algorithm  

For thp  order interpolation polynomial in the IE-
FFT algorithm, pdab += and nd /λ=  are 
given (where n  is the number of segments per 
wavelength). Also, as mentioned earlier, to assure 
the analyticity of the integral kernel, αλ≥a  
should be kept. Furthermore, in the current IE-FFT 
implementation, uniform sampling is simply 
adopted, namely dxx ii =−+1 . Subsequently, the 
following equation holds 
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Additionally, we have the following inequalities 
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In equation (26), the parameters iσ are given by  
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Substituting equation (24), (25) and (26) into 
(23) results in the final upper bound for the IE-
FFT algorithm in (28) below. 

In summary, the upper error bounds for the 
relative interpolation error versus the sampling 
segments, n , is plotted in Fig. 3 with 2.0=α . 
The resulting equation is given by (29).  
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The second-order and third-order interpolation 
polynomials in the IE-FFT are plotted with 
squares and circles. Fig. 4 shows the upper 
error bound for the relative interpolation error 
versus the minimum distance, α  with 7=n  . 
We should point out that in Fig. 4, the error 
approaching a constant as ∞→α . This is the 
unique feature of the wave propagation 
problems. Namely, any high-order derivatives 

( ) [ ] ( )
( )

( ) ( )

( ) ( ) ( ) ( )

3

1 1
2 3 3

0 0

4 2

1 31 1 4
2 2 2 3 4 4

0 0 00

3 2 0.42 116 1
2 2 , 2

, 33 3 2 3 0.38 110 1
2 2 2 2

p k k n n pf x f x
p

f x
k k k nk n

σ σ
απα πα

σ σσ σ σ
απα πα πα πα

⎧ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎡ ⎤⎪ ⎢ ⎥+ + +⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎪ ⎢ ⎥ ⎣ ⎦⎝ ⎠ ⎝ ⎠ =⎣ ⎦− ⎪⎪≤ =⎨ ⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎡ ⎤⎪ ⎢ ⎥+ + + + +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎪ ⎢ ⎥ ⎣ ⎦⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦⎪
⎪⎩

(28) 

122 ACES JOURNAL, VOL. 24, NO. 2, APRIL 2009



of the Green’s function will always exhibit 
( )xO /1  behavior asymptotically. If this is for 

static applications, the error will approach zero as 
∞→α . 

5 10 15 20 25 30 35
10-4

10-3

10-2

10-1

100

Samplng segments per wavelength

 U
pp

er
 b

ou
nd

 o
f t

he
 re

la
tiv

e 
in

te
rp

ol
at

io
n 

er
ro

r

p = 2
p = 3

 
Fig. 3 Error bounds of the interpolated Green’s 
function, plotted as a function of sampling rate and with 
p=2 and p=3. 
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Fig. 4 Plots of upper error bounds for the Green’s 
function interpolation of the IE-FFT algorithm as a 
function of minimum distance between source and 
receiver. 
 
 

V. NUMERICAL RESULTS 
In this section, studies on two numerical 

examples are conducted in order to demonstrate 
the complexity and accuracy of the IE-FFT 
algorithm. The EM scattering from a PEC sphere 
of various electrical sizes is first computed to 
validate the accuracy and efficiency of the IE-FFT 
algorithm. To demonstrate the IE-FFT algorithm, 
second-order and third-order Lagrange 
polynomials for interpolating the Green’s function 
are used. For a very large-scale realistic problem, 
the scattering of a generic battleship, is 
considered. All numerical experiments are carried 

out on a 16 GB RAM, AMD® OpteronTM 246 64-
bit workstation. All computations in this section 
have been performed in single precision 
arithmetic. 

A. A PEC sphere 
     Scattering from a PEC sphere of radius 1 meter 
is first considered to demonstrate the complexity 
of the IE-FFT algorithm. In this example, the mesh 
density is kept constant, e.g. 7/λ=h  , while the 
operating frequency increases. Table 1 and Table 2 
summarize the performance, in terms of memory, 
of the IE-FFT algorithm for second-order and third 
order Lagrange polynomials, respectively.  The 
total memory is split into the last three columns of 
each table, representing each individual matrix 
involved in (18). 
 
Table 1: Memory requirement of the IE-FFT algorithm 
( 2p = ) for scattering from a perfect conducting sphere  

Frequency 
(MHz) 

Unknowns corrZ  
(MB) A DΠ +Π  

(MB) 

G  
(MB) 

600 12,288 7.0 7.6 3.1 
1,200 49,152 28.1 30.7 24.4 
2,400 196,608 112.7 124.8 194.6 
4,800 786,432 450.8 502.4 1547.7 

 
Table 2: Memory requirement of the IE-FFT algorithm 
( 3p = ) for scattering from a perfect conducting sphere 
  
Frequency 

(MHz) 
Unknowns corrZ  

(MB) A DΠ +Π  
(MB) 

G  
(MB) 

600 12,288 7.0 17.1 3.1 
1,200 49,152 28.1 67.7 24.4 
2,400 196,608 112.7 274.0 194.6 
4,800 786,432 450.8 1088.7 1547.7 

 
     Having addressed the complexity of the 
algorithm, we shall now address the accuracy. For 
that reason, the bistatic echo area or scattering 
cross section (SCS) results of the IE-FFT 
algorithm for 2=p  are compared with those of 
the conventional MoM and Mie series solution in 
Fig. 5(a). To further quantify the error, the RMS 
error of the SCS is reported in each figure. The 
RMS error of SCS calculation is defined as 

 ( ) ( )
( )

2 2

0 0
2 2

0 0

, , sin

, sin

IE FFT Mie

Mie

SCS SCS d d

SCS d d

π π

π π

θ φ θ φ θ θ φ
η

θ φ θ θ φ

− −
= ∫ ∫

∫ ∫
 (30) 

123SEO, WANG, LEE: ANALYZING PEC SCATTERING STRUCTURE USING IE-FFT



where θ  and φ  are angles of the observation 
points, ( ),MieSCS θ φ  is the SCS calculation by the 
Mie series, and ( ),IE FFTSCS θ φ−   is that of the IE-
FFT algorithm. For MoM, the RMS error of SCS 
calculation relative to Mie series is computed as 
6.2727e-04. The bistatic SCS solutions of MoM 
are very well matched to those of Mie series. For 
IE-FFT algorithm, the RMS error relative to MoM 
solutions is also computed and corresponds to 
0.0443. The bistatic SCS is in very good 
agreement with that of MoM. The accuracy can be 
improved by increasing the order of the Lagrange 
polynomials or the sampling segments per 
wavelength, in the interpolation of the Green’s 
function. Fig. 5(b) shows the improvement of the 
bistatic SCS calculations. By increasing the order 
of the Lagrange polynomials or the sampling 
segments, each RMS error has improved to 0.0165 
and 0.0074, respectively. For the second-order and 
third-order Lagrange polynomials, 11 and 7 
sampling segments per wavelength are used, 
respectively. To summarize these experiments, the 
RMS errors versus the size of sampling segments 
per wavelength are plotted in Fig. 6 for second-
order and third order interpolation. Figure 7 
compares the bistatic SCS from the IE-FFT 
algorithm ( 2,3p = ) with the result from Mie series 
at 2.4 GHz. It corresponds to 196,608 unknowns. 
The electrical size of the PEC sphere is 16λ . The 
memory of MoM and Π matrices, and the 
coefficients of Green’s function are about 432 MB 
for second-order interpolation, and 661 MB for 
third-order interpolation. Both results agree very 
well with the solution of Mie series. As expected, 
the result from the third-order polynomials is more 
accurate. The RMS error of SCS is computed to be 
0.0494 and 0.0160, respectively. In Fig.8, the 
bistatic SCS of the sphere with diameter 32λ is 
plotted. The number of IE-FFT unknowns is 
786,432. The result of IE-FFT algorithm agrees 
well with those of Mie series. However, 2p =  
answer oscillates around the exact values. The 
solution is improved by increasing the order of the 
polynomials, not by increasing the sampling 
segments. Due to ( )1.5O N  complexity, increasing 
the order of the polynomials is preferred in 
electrically large problems. The total memory 
required is about 2.5 and 3.1 GB for second and 
third order polynomials, respectively. 

   

 
Fig. 5  Bistatic SCS for a PEC 4λ sphere. (a) IEFFT 
results, using p = 2 (d=λ/7); (b) using p = 2 (d=λ/7) and 
p = 3 (d=λ/7) with comparisons to conventional MoM 
and Mie series. 
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Fig. 6 The RMS error of bistatic SCS calculation versus 
sampling segments per wavelength. A 4λ PEC sphere is 
tested and the RMS error is relative to that of MoM 
solution. The second-order and third-order Lagrange 
polynomials are used.  

124 ACES JOURNAL, VOL. 24, NO. 2, APRIL 2009



B. Generic battleship 
A realistic example considered here is a generic 

battleship. When the plane wave is incident from 
the nose direction, the bistatic SCS of θθ -
polarization is computed by the IE-FFT algorithm 
and conventional MoM. Fig.9 shows the 
comparison between the bistatic SCS from the IE-
FFT algorithm and the result of the conventional 
MoM at 30MHz. Both results agree very well.  

In the next experiment, the frequency of 
operation is increased to 60MHz. The results of 
the IE-FFT algorithm are compared with those of 
ACA algorithm [9], as shown in Fig.10. The result 
of IE-FFT algorithm agrees well with that of ACA 
algorithms. Finally, the bistatic scattering of the 
battleship at the frequency of 240 MHz is 
considered in Fig. 11. In the IE-FFT computations 
N = 739,416 unknowns ( corresponds to an 
average discretization size of / 5h λ= ) are 
involved along with a third-order Green’s function 
interpolation. The memory of MoM and П 
matrices, and the coefficients of Green’s function 
are about 4.3 GB. Two polar plots are also shown 
in Fig. 11. The left and right figures are plots in 
the azimuth and elevation planes, respectively. 
The bistatic SCS of φφ -polarization is plotted in 
Fig. 12.  
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Fig. 7 Bistatic SCS for a PEC 16λ sphere. The results 
of the IE-FFT algorithm are compared with those of 
Mie series. It corresponds to 196,608 RWG unknowns. 
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Fig. 8 Bistatic SCS for a PEC 32λ sphere. The results 
of the IE-FFT algorithm are compared with those of 
Mie series. It corresponds to 786,432 RWG unknowns. 

 

 
Fig. 9 Comparisons of the bistatic SCS for the 
battleship at 30 MHz (θθ-polarization) using the IE-
FFT and the conventional MoM.  

 
Fig. 10 Comparisons of the bistatic SCS for the 
battleship at 60 MHz (θθ -polarization) using the IE-
FFT and the ACA algorithm [9]. 
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Fig. 11 The computed bistatic SCS of the battle ship at 240 MHz (θθ -polarization) using the IEFFT. 

 
Fig. 12 The computed bistatic SCS of the battle ship at 240 MHz (φφ –polarization) using the IEFFT. 
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