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Abstract─ A Discontinuous Finite-Element Time-
Domain method is presented that is based on a 
high-order finite element discretization of 
Maxwell’s curl equations.  The problem domain is 
decomposed into non-overlapping subdomains that 
couple through boundary integral terms.  Within 
each subdomain, the tangential electric and 
magnetic fields are discretized via high-order curl 
conforming basis functions, leading to a high-
order representation of the volume fields.  For 
unbounded problems, a perfectly matched layer 
absorbing medium is used.  The discrete equations 
are presented in a symmetric form.  The method 
leads to an explicit time-dependent solution of 
Maxwell’s equations that is high-order convergent.      
 
Index Terms─ Discontinuous Galerkin Method, 
Finite-Element Time-Domain.  
 

I. INTRODUCTION 
     Discontinuous Galerkin Time-Domain methods 
are a class of finite element methods that employ 
piecewise continuous basis and testing functions.  
The methods are characterized as being high-order 
accurate, able to model complex geometries, 
efficient, stable, and highly parallel [1].  
Discontinuous Galerkin Time-Domain (DGTD) 
methods have more recently been employed for 
the solution of Maxwell’s equations [2-8].  DGTD 
methods are typically based on a point-based 
discretization by sampling at Gauss-Lobatto 
Quadrature points.  The fields are interpolated by a 

polynomial expansion over each cell, which are 
then projected onto the quadrature points [1, 4].  
One can thus draw an analog between DGTD 
methods and point-based Nyström discretizations 
used for integral equation solutions [9, 10].  
DGTD methods have proven to be highly accurate, 
providing exponential convergence and have 
provided an excellent solution method for large 
scale electromagnetic simulations. [2-8].   
     It is noted that the vector fields of DGTD 
methods are projected onto a polynomial complete 
function space.  A concern arises that near 
discontinuities or geometric singularities spurious 
charges can corrupt the solution.  Thus, penalty 
methods have been recommended to weakly 
enforce the divergence preserving properties of the 
fields [11].  Furthermore, for late-time stability, 
upwind flux methods have also been 
recommended [4, 5].   
     In this paper, a Discontinuous Galerkin method 
based on a finite-element discretization is 
presented.  This method, which is referred to as 
the Discontinuous Galerkin Finite-Element Time-
Domain (DGFETD) method, is based on a finite-
element discretization of Maxwell’s curl equations 
[12].  Rather than a point-based sampling, both the 
electric and magnetic fields are expanded via 
hierarchical Nedelec curl-conforming mixed-order 
basis functions [13, 14].  Similar to the DGTD 
method, tangential field continuity is weakly 
constrained across shared boundaries.  Due to the 
properties of curl-conforming vector basis 
functions, only basis functions associated with 
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topologies on a domain boundary (i.e., edges and 
faces) have a non-zero tangential projection.  
Thus, only local basis functions are shared across 
domain boundaries.  This is similar to DGTD 
methods. The use of curl-conforming basis 
functions that satisfy Nedelec’s criterion also 
avoids the concern of spurious solutions [15].  
Hence, the formulation avoids the need for penalty 
methods [16].  Furthermore, the method does not 
require upwind flux terms for stability.  The use of 
hierarchal curl-conforming basis functions allows 
for local hp-refinement of the discretization.  
Another advantage of the DGFETD formulation is 
that sub-domains are not restricted to single cells.  
Rather, an arbitrary partitioning of the domain can 
be employed.   
     Other finite-element time-domain 
discretizations of Maxwell’s curl equations have 
been proposed [17-20].  The majority of these 
methods provide a reciprocal discretization based 
on a curl-conforming basis function representation 
for the electric field intensity, and a divergence 
conforming basis function representation of the 
magnetic flux density (or the dual H-D 
formulation).  Time domain integration is typically 
performed using Symplectic time-integration 
methods.  In contrast, the proposed DGFETD 
scheme expands both the electric and magnetic 
field intensities using high-order curl-conforming 
basis functions.  Also, high-order Runge-Kutta 
time-integration methods are employed.  The 
proposed DGFETD method thus provides an 
explicit solution scheme that is high-order in both 
space and time leading to exponential convergence 
     A salient feature of the proposed DGFETD 
formulation is that a PML termination is naturally 
represented.  The perfectly matched quality of a 
PML medium is based on a dual behavior of the 
electric and magnetic properties of the material 
media.  This is ideally represented by the proposed 
formulation, which has dual function space 
representations for the field intensities, and the 
flux densities. The time-integration scheme also 
assumes that the electric and magnetic fields are 
co-located in time.  As a consequence, it is found 
that the PML implementation within the DGFETD 
scheme provides upwards to 5 digits of accuracy 
with only a 2 cell thick PML that has a constant 
material profile. In this paper, the DGFETD 
formulation and discretization are presented in 
Sections II – IV. The implementation of a 
perfectly matched layer absorbing medium for 
simulating unbounded domains is presented in 
Section V.  A number of numerical simulations 

based on the DGFETD scheme are presented in 
Section VI. Through these examples, the 
exponential convergence of the DGFETD method 
is demonstrated, and the performance of the PML 
is validated.  

  
II.  THEORY 

     Consider the electromagnetic fields that are 
radiated by electric or magnetic current densities 
in a domain Ω  bound by ∂Ω .  The fields must 
satisfy Maxwell’s curl equations: 

 *E H H M
t
μ σ∂

∇× = − ⋅ − ⋅ −
∂

, (1) 

 H E E J
t
ε σ∂

∇× = ⋅ + ⋅ +
∂

, (2) 

where, μ , ε , *σ , and σ  are permeability, 
permittivity, and conductivity tensors, and J  and 
M  are impressed current densities. 
     The domain Ω  is subdivided into non-
overlapping and contiguous subdomains.  The ith 
subdomain is defined by the volume iV  and bound 
by iV∂ .  Each subdomain is then discretized with 
fitted polyhedra, or finite elements.  The field 
intensities are expanded within each finite element 
using suitable vector basis functions weighted by 
time-dependent coefficients. A set of testing 
functions that span the same function space as the 
basis functions is also introduced. The inner 
product of the coupled curl equations with a set of 
test functions is performed: 

 * 0
i

h

V

T H H M E dv
t
μ σ∂⎡ ⎤⋅ ⋅ + ⋅ + +∇× =⎢ ⎥∂⎣ ⎦∫ ,(3) 

 0
i

e

V

T E E J H dv
t
ε σ∂⎡ ⎤⋅ ⋅ + ⋅ + −∇× =⎢ ⎥∂⎣ ⎦∫ , (4) 

where hT  and eT  are testing functions that span 
the H  and E -field function spaces, respectively.   
After applying a vector identity, the curl term in 
(3) can be written as: 

( )ˆ
i i i

h h h

V V V

T Edv E T dv T n E ds
∂

⋅∇× = ⋅∇× + ⋅ ×∫ ∫ ∫ , (5) 

where n̂  is the outward normal of iV∂ .  It is 
assumed that the tangential field n̂ E×  on iV∂  is 
the field just interior to V .  Let n̂ E+×  represent 
the tangential field on iV∂  just exterior to iV .  The 
exterior field is typically the field of a neighboring 
subdomain.  For generality, assume there is an 
impressed magnetic surface current density on iV∂ .  
Consequently, the tangential electric fields must 
satisfy the relationship: 

( )ˆ
i

s
V

n E E M+

∂
× − = − ,  (6) 

130 ACES JOURNAL, VOL. 24, NO. 2, APRIL 2009



 

where, n̂  is to be the outward normal to iV .  This 
boundary condition can be rewritten as: 
 ( )ˆ ˆ ˆ2

i i
sV V

n E n E n E M+

∂ ∂
× = × + × − , (7) 

 ( )1 1ˆ ˆ ˆor,   
2 2i i

sV V
n E n E n E M+

∂ ∂
× = × + × − , (8) 

which is equivalent to averaging the tangential 
fields.  Substituting this into (5) leads to: 

 
( )1 1ˆ ˆ

2 2

i i

i i

h h

V V

h h
s

V V

T Edv E T dv

T n E n E ds T M ds+

∂ ∂

⋅∇× = ⋅∇× +

⋅ × + × − ⋅

∫ ∫

∫ ∫
. (9) 

Next, from (5) 

 

1 1ˆ
2 2

1
2

i i

i

h h

V V

h

V

T n Eds T Edv

E T dv
∂

⋅ × = ⋅∇×

− ⋅∇×

∫ ∫

∫
. (10) 

This is combined with (9), leading to: 
1 1
2 2
1 1ˆ
2 2

i i i

i i

h h h

V V V

h
s

V V

T Edv T Edv E T dv

T n E ds T M ds+

∂ ∂

⋅∇× = ⋅∇× + ⋅∇×

+ ⋅ × − ⋅

∫ ∫ ∫

∫ ∫
. (11) 

     Finally, applying (11) within (3) leads to the 
operator: 

 

*

1 1
2 2

1 1ˆ
2 2

i

i i

h h h
V

h hV

h h
s

V V

T H T H T M
t dv

T E E T

T n E ds T M ds

μ σ

+

∂ ∂

∂⎡ ⎤⋅ ⋅ + ⋅ ⋅ + ⋅⎢ ⎥∂⎢ ⎥
+ ⋅∇× + ⋅∇×⎢ ⎥
⎣ ⎦
= − ⋅ × + ⋅

∫

∫ ∫

. (12) 

By duality, (4) can also be written as: 

 
1 1
2 2
1 1ˆ
2 2

i

i i

e e e
V

e eV

e e
s

V V

T E T E T J
t dv

T H H T

T n H ds T J ds

ε σ

+

∂ ∂

∂⎡ ⎤⋅ ⋅ + ⋅ ⋅ + ⋅⎢ ⎥∂⎢ ⎥
− ⋅∇× − ⋅∇×⎢ ⎥
⎣ ⎦
= ⋅ × + ⋅

∫

∫ ∫

, (13) 

where, sJ  is an impressed surface current density, 
and H +  is the magnetic field exterior to iV  on 

iV∂ . 
     Equations (12) and (13) represent the weak 
form of Maxwell’s curl equations that will be 
applied within each sub-domain.  The fields E  
and H  are associated uniquely with subdomain 

iV .  Each subdomain is coupled with neighboring 
sub-domains, or an exterior region, through the 
boundary integral terms.  It is noted that the 
surface current densities are zero unless an 

impressed current density is placed on the 
boundary.  Hence, the boundary integral terms 
weakly constrain the continuity of the tangential 
fields across source-free sub-domain boundaries. 

 
III.  DISCRETIZATION 

     Each subdomain is discretized with a fitted 
polyhedral mesh, which can be hexahedron, 
tetrahedron, or prisms.  Within each sub-domain, 
the field intensities E  and H  are expanded into a 
set of hierarchical pH -curl conforming basis 
functions, such as those proposed in [13, 14]: 

 ( ) ( ) ( ) ( )
1 1

,
p pN N

i i i i
i i

E e t f r H h t f r
= =

≈ ≈∑ ∑ , (14) 

where, ( )ie t  and ( )ih t  are unknown time-
dependent coefficients weighting each basis 
functions.  The test functions span an identical 
function space as the basis functions, leading to a 
Galerkin formulation.  This leads to a set of 
coupled difference equations derived from (12) 
and (13) expressed as: 

 *
, , , ,

M Etμ σ

+ +∂
+ + = − −

∂
h h h h h e h h eM h M h S e T F e , (15) 

 , , , ,
J Htε σ

+ +∂
+ − = − +

∂
e e e e e h e e hM e M e S h T F h , (16) 

where, the superscript x,y implies the x-field test 
function and y-field basis function, and h  and e  
are the vectors of time-dependent coefficients 

( )ih t  and ( )ie t .  The vectors +h  and +e  are the 
coefficient vectors associated with exterior 
tangential fields from a coupled region.  The 
matrix entries are computed as:  
 [ ] ,

,
i

j ij i
V

f f dvν ν= ⋅ ⋅∫M  (17) 

 [ ] ( ),

1 ,
2

i

j i i jj i
V

f f f f dv= ⋅∇× + ⋅∇×∫S  (18) 

 / ,

1 ˆ ,
2

i

E H j i kj k
V

f n f ds+ +

∂

⎡ ⎤ = ⋅ ×⎣ ⎦ ∫F  (19) 

 [ ] [ ] 1, or
2

i i

J j V J j sj j
V V

f J dv f J ds
∂

= ⋅ = − ⋅∫ ∫T T , (20) 

where, if  and jf  are the basis and testing 
functions, respectively, for the appropriate e-field 
or h-field, and , ,  or ν μ ε σ= .  The S matrices 
have the property ,h eS  = , Te hS . The matrices M 
are symmetric for isotropic media, and for 
rotationally symmetric anisotropic media.  
     The “face” matrices ,

E

+h eF  or ,
H

+e hF  represent 
the coupling to the neighboring sub-domains.  The 
operator involves only the tangential projections of 
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the interior and exterior fields.  Thus, when using 
curl-conforming basis functions, only the basis 
functions associated with the boundary topology 
(e.g., function spaces associated with faces and 
edges on iV∂ ) with overlapping support, 
contribute to these matrices.  Consequently, the 
matrices are highly sparse.  If the topology of the 
mesh on either side of iV∂  are aligned (that is the 
faces and edges between the two sub-domains are 
shared), then , , .

T

E H

+ +
= −h e e hF F   In general, the 

meshes need not align, and only the overlapping 
support of the vector basis functions on iV∂  
contribute to the face matrices. 
     The coupled equations in (15) and (16) are 
combined into a single difference equation as: 
 += + +x Ax Bx t , (21) 

where               ,
+

+
+

⎛ ⎞⎛ ⎞
= = ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

h h
x x

e e
, (22) 

 
1 1

*

1 1

, , , ,

, , , ,

μ μσ

ε ε σ

− −

− −

⎛ ⎞− −
⎜ ⎟=
⎜ ⎟−⎝ ⎠

h h h h h h h e

e e e h e e e e

M M M S
A

M S M M
, (23) 

 
1

1

, ,

, ,

0

0
E

H

μ

ε

− +

− +

⎛ ⎞−
⎜ ⎟=
⎜ ⎟
⎝ ⎠

h h h e

e e e h

M F
B

M F
,  (24) 

 
1

1

,

,

M

J

μ

ε

−

−

⎛ ⎞−
⎜ ⎟=
⎜ ⎟−⎝ ⎠

h h h

e e e

M T
t

M T
. (25) 

     The local difference equation (21), represents 
the first-order coupled differential equation for the 
fields in each sub-domain.  The difference 
operators in all sub-domains are then solved 
simultaneously using a high-order Runge-Kutta 
(RK) scheme [2], [21].  It is noted that the local 
difference operator is implicit.  That is, it involves 
the inversion of the matrix M. However, this local 
linear system is generally quite small, and this can 
be efficiently performed using an LU-
factorization.  The global linear system of 
equations, which consists of the combination of all 
the local linear systems, is thus an explicit 
formulation.  The global system is conditionally 
stable.  To date, an analytical study of the stability 
criterion has not been completed.  However, via a 
heuristic analysis, a general stability criterion has 
been determined, which is expressed as: 

 
2

2

1 ,hexahedron
2 ( 1)min

1 , tetrahedron
4 ( 1)

r r

o

r r

h
pc t

h
p

ε μ

ε μ

⎧⎛ ⎞
⎪⎜ ⎟+⎪⎝ ⎠Δ ≤ ⎨⎛ ⎞⎪⎜ ⎟⎪ +⎝ ⎠⎩

 (26) 

where, h is the edge length, and p is the order of 
the Hp curl conforming basis (e.g, H0 basis are the 
classic Whitney curl-conforming vector basis 
functions).  Consequently, the stability criterion is 
based on the minimum edge length in the mesh.  It 
is noted that through experimentation, this stability 
limit has been dependable, even for elements with 
very poor aspect ratios, and very small Jacobians. 

 
IV. BOUNDARY CONDITIONS 

     On perfectly electrical conducting boundaries 
(PEC), the tangential electric field is presumed to 
be zero.  Consequently, the curl-conforming basis 
associated with all edges and faces on a PEC 
surface are constrained to be zero.  Similarly, E+  
and sM  = 0 on the PEC boundary.  Since eT  
spans the same space as the electric field, the test 
functions on the PEC surface are also constrained 
to be zero.  Thus, the right-hand-side of (13) also 
has null contribution on a PEC surface.  Note that 
if the conductor is infinitesimally thin, distinct 
meshes on either side of the conductor must be 
assumed, so that the magnetic field on either side 
of the conductor is distinct.  If the sub-domains 
boundaries are defined on the thin PEC surface, 
this is implicitly constrained by the DGFETD 
formulation. 
     A dual formulation is used to constrain the 
function space on the surface of a perfectly 
magnetic conductor (PMC) boundary. An 
impressed surface current density can also be 
placed on an exterior or an interior boundary.  
Surface currents couple directly into the sub-
domains through the boundary terms in (12) and 
(13).  The current density can be on the exterior 
boundary ∂Ω , such as demanded by a hybrid 
modal/FEM or Boundary Element/FEM 
formulation. In this case, the exterior tangential 
fields n̂ E+×  and n̂ H +×  are assumed to be zero, 
since they are effectively represented by the 
current densities. 
     The surface current density can also lie within 
Ω  on a sub-domain boundary iV∂ .  In this case, 
n̂ E+×  and n̂ H +×  would represent the exterior 
fields of the neighboring subdomain, and sM  and 

sJ  the impressed current densities.  It is noted that 
the step discontinuity in the fields are naturally 
represented by the DGFETD formulation. 
     An alternative source is a discrete lumped 
source model, such as a voltage source, current 
source, or discrete circuit mode (with internal 
impedance).  To describe the implementation of 
such sources, we will begin with the simplest case, 
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which is a discrete voltage source, as illustrated in 
Fig. 1.  The source is applied across a gap in a 
conductor path as represented by the shaded 
region on the left figure in Fig. 1.   The gap has a 
length g along the unit axial vector of the gap, ĝ .  
If the gap is small relative to a wavelength, then 
the electric field in the gap can assumed to be 
constant, and is expressed as: 

 ( ) ( ) ( )ˆ stot
g

V t
E t g g

g
δ= , (27) 

where, ( )sV t  is the time-dependent voltage.  This 
can be incorporated into the finite element method 
by assuming that source gap field located on an 
edge of the mesh perpendicular to the gap axis.  
Then, from (12) 

 1 1
2 2
1 ˆ
2

i

i

i

h h
V

V

h h

V

h tot
g

V

T H T M dv
t

T E E T dv

T n E ds

μ

∂

∂⎡ ⎤⋅ ⋅ + ⋅ +⎢ ⎥∂⎣ ⎦
⎡ ⎤⋅∇× + ⋅∇×⎢ ⎥⎣ ⎦

= − ⋅ ×

∫

∫

∫

, (28) 

where, n̂  is the unit normal directed out of iV .  
(Note, the conductivity is assumed to be zero for 
simplicity).  The surface integral is thus non-zero 
when tested with the edge basis hT  associated 
with the gap edge.  It is further noted, that on the 
conductor, n̂ E×  and ˆ en T×  = 0. 
 

ĝ
conductor

⇒ +− ( )sV tg

 
Fig. 1. Discrete voltage source model. 

 
V.  PML ABSORBING MEDIA 

     When simulating unbounded media, the FETD 
domain must be truncated and an exterior radiation 
boundary condition must be introduced on the 
truncation boundary.  A number of approximate 
local absorbing boundary conditions could be 
employed [22]. However, such boundary 
conditions have limited accuracy, and require that 
the truncation boundary be placed a non-trivial 
distance from the device under test.  Absorbing 
material layers have also been proposed to 
truncate the problem domain.  The most accurate 
is the perfectly matched layer (PML) [23].  A 
number of PML formulations have been proposed 

for the DGTD method, including the anisotropic 
PML formulation[6, 8, 24], and a non-linear PML 
formulation [25]. In this paper, a PML formulation 
based on the stretched-coordinate formulation is 
presented [26, 27].  
     It is assumed that the extremity of the mesh is 
terminated by a PML media with Cartesian 
boundaries.  Within the PML media, Maxwell’s 
equations are expressed in a stretched coordinate 
form [26, 27].  The x-projections of Maxwell’s 
equations in the frequency domain are then 
expressed as (note, a lossless anisotropic media is 
assumed for simplicity): 

              1 1
x z y

y z

j H E E
s y s z

ωμ ∂ ∂
− = −

∂ ∂
, (29) 

 1 1
z y

y z

j E H H
s y s z

ωε ∂ ∂
= −

∂ ∂
, (30) 

where ks  ( , ,k x y z= ) are the stretched coordinate 
metric coefficients [26].  The classical choice for 
the stretched coordinate coefficients is [28]: 

 , , ,k
k k

o

s k x y z
j
σ

κ
ωε

= + = , (31) 

where kκ  and kσ  are assumed to be positive real, 
and can be one-dimensional functions along the k-
direction.  Starting with (29), both sides of the 
equation are multiplied by y zs s , leading to: 

 y z x z z y yj s s H s E s E
y z

ωμ ∂ ∂
− = −

∂ ∂
. (32) 

Since, zs  and ys  are functions of z and y only, 
respectively, this can be re-written as: 

 y z x z z y yj s s H s E s E
y z

ω μ ∂ ∂
− = −

∂ ∂
. (33) 

Defining the metric coefficients as in (31) leads to: 

 

y z
y z x

o o

yz
z z y y

o o

j H
j j

E E
y j z j

σ σω κ κ μ
ωε ωε

σσκ κ
ωε ωε

⎛ ⎞⎛ ⎞
− + + =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
⎛ ⎞ ⎛ ⎞∂ ∂

+ − +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

. (34) 

Next, the variable substitutions are made: 

 ( ), , , ,h ek k
k k

H EP P k x y z
j jω ω

= = = . (35) 

This substitution is applied to (34), leading to: 
( )

2
y z z y y z h

y z x x
o o

ye ez
z z z y y y

o o

j H P

E P E P
y z

σ κ σ κ σ σ
ωκ κ μ μ

ε ε
σσκ κ

ε ε

⎛ ⎞+
⎜ ⎟− + −
⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞∂ ∂
= + − +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

. (36) 
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A second variable substitution is made: 

 
( )

,

, , ,

hk
k k k k

o

ek
k k k k

o

H H P

E E P k x y z

σ
κ

ε
σ

κ
ε

= +

= + =
. (37) 

This is substituted into (36), leading to: 
( )

( )

2

1
y z z y

y z x x
o

y z z yx x x
y z x x

o o o

y z h
x z y

o

j H H

j P P

P E E
y z

σ κ σ κ
ωκ κ

εμ
σ κ σ κκ σ σ

ωκ κ
ε ε ε

σ σ
μ

ε

⎛ ⎞+
⎜ ⎟+
⎜ ⎟− ⎜ ⎟+
⎜ ⎟− −⎜ ⎟
⎝ ⎠

∂ ∂
− = −

∂ ∂

.(38) 

From (35) and (37), it is further seen that: 

 1 1h x
x x x x

x x o

j P H H Pσ
ω

κ κ ε
= = − . (39) 

Applying this to (38), leads to: 

 

( )

( )
2

2

2 2 2 2

.

y z z yy z y z x
x

x x o x o

x y z z yy z y zx
x

x o o x o

z y

j H

P

E E
y z

σ κ σ κκ κ κ κ σω μ
κ κ ε κ ε

σ σ κ σ κκ κ σ σσ
μ

κ ε ε κ ε

⎛ ⎞+
⎜ ⎟− + −
⎜ ⎟
⎝ ⎠
⎛ ⎞+
⎜ ⎟− + −
⎜ ⎟
⎝ ⎠
∂ ∂

= −
∂ ∂

.(40) 

     The expression in (40) can be written in the 
time-domain, and then generalized to all 
projections of Faraday’s law as: 

 ha H b H c P E
t

μ μ μ∂
− ⋅ − ⋅ − ⋅ = ∇×
∂

, (41) 

where, from (39) 

 1h hP H d P
t

κ −∂
= ⋅ − ⋅

∂
. (42) 

The tensors , , , ,a b c d and κ  are all diagonal 
tensors, defined by: 
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,

1 ,

,

, .

y z
xx

x

xx y z z y xx x
x o

y z x
xx xx

o o

x
xx xx x

x o

a

b a

c b

d

κ κ
κ

σ κ σ κ σ
κ ε
σ σ σ
ε ε
σ

κ κ
κ ε

=

= + −

= −

= =

 (43) 

The remaining diagonal terms of the tensors are 
derived via a permutation of the subscripts 
( , ,x y y z z x→ → → ). 

A similar analogy is followed for Ampere’s 
law, leading to the dual form: 

 ea E b E c P H
t
ε ε ε∂

+ ⋅ + ⋅ + ⋅ = ∇×
∂

, (44) 

where, from (39) 

 1e eP E d P
t

κ −∂
= ⋅ − ⋅

∂
. (45) 

     In summary, the pertinent PML equations 
governing the fields in the PM region are given by 
(41), (42), (44), and (45).  The unknowns in this 
region are thus E , H , eP , and hP .   

It is observed that outside the PML region, 
a Iκ = = , the unit dyad, and 0b c d= = = .  

Thus, outside the PML region H H=  and E E= , 
(41) and (44) reduce to the classical Maxwell curl 
equations, and (42) and (45) are not needed.  Thus, 

eP , and hP  are only used in the PML region. 
The PML region is also sub-divided into non-

overlapping contiguous subdomains that are 
discretized with finite-elements. Within the 
discrete space, the field intensities and the 
auxiliary fields are expanded using Hp-curl 
conforming basis.  Test functions that span an 
identical function space as the basis functions, are 
introduced.  Following the procedure in (3) – (20), 
a Galerkin formulation is thus derived.  This leads 
to the discrete linear operator: 

 , , , , , 0a b ct
+∂

+ + + + =
∂

h h h h h h h h e h eM h M h M p S e F e ,(46) 

 , , , , , 0a b ct
+∂

+ + − − =
∂

e e e e e e e e h e hM e M e M p S h F h , (47) 

 1
, , , 0dt κ−

∂
− + =

∂
h h h h h h h hM p M h M p , (48) 

 1
, , , 0dt κ−

∂
− + =

∂
e e e e e e e eM p M e M p , (49) 

where the matrices are defined in (17) – (19).  
Equations (46) – (49) can be expressed as a first 
order difference operator: 
 += +x Ax Bx , (50) 
where, 
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h

e

+
+

+

⎡ ⎤
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h
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x x
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                                                                            (52) 
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     It is observed that with this form of the PML, 
arbitrary unstructured meshing can be employed 
within the PML region.  The restriction is that the 
global PML boundaries be planar and orthogonal.  
It is further noticed that hp  and ep  are local to 
each subdomain and are not shared.  
Consequently, only the exterior fields +h  and +e  
couple the sub-domains.  It is further noted that 
when iV∂  lies on the PML interface, +h = +h , and 
+e = +e .  This is proven by observing in (37), that 
kκ  and kσ  are functions of k-only, and hence only 

impact the normal-projections of the fields on the 
PML boundaries.  As a consequence, the mapped 
fields kH  and kE  maintain tangential continuity 
with the physical fields kH and kE . 
 

VI. NUMERICAL STUDIES 
     The focus of this section is the validation of the 
DGFETD method presented in the previous 
sections.  In the simulations presented, either 
three-dimensional hexahedral or tetrahedral 
meshes are used to discretize the volume.  In all 
cases presented, the sub-domains iV  consist of a 
single finite element.  The subdomain boundary 

iV∂  is thus the faces of the polyhedron.  In all 
cases, the sub-domain boundary faces are 
contiguous.  Over each finite element, a variant of 
Webb’s curl-conforming mixed-order hierarchal 
vector basis [14] were employed for tetrahedral 
elements.  Hierarchal curl-conforming mixed-
order basis functions for hexahedral elements have 
also been derived, and were used for hexahedral 
elements.  RK-4 time-integration was used for all 
simulations for the time-integration of (21) and 
(50). 
     Initially, we consider the cavity resonator 
problem that is a PEC cube.  The cube had a 
dimension of 1 m edge lengths.  The fields within 
the cavity were excited by a volume current source 
randomly placed in the cavity.  The time-
dependent source had a differentiated Gaussian 
time-signature.  The electric and magnetic fields 
were also probed during the time-simulation at a 
random location.  The resonant frequencies of the 
cavity were extracted from the time-dependent 
fields using the FFT.  The cavity was discretized 
with fitted hexahedral elements.  The mesh 
densities ranged from 2 elements along an edge to 
16 elements along an edge. The resonant 

frequencies were extracted for various order 
elements. 
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Fig. 2. Relative error for the first four modes of a 1 m 
PEC cube resonator.  (a) H0 basis, (b) H1 basis, (c) 
varying basis order (h = 0.5 m). 
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Fig. 3. Cavity ring resonator loaded with a dielectric 
ring tessellated with a quadratic tetrahedral mesh.   
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Fig. 4 Cavity ring resonator loaded with a dielec-tric 
ring tessellated with a quadratic tetrahedral mesh.  (a) 
722 quadratic tetrahedral mesh.  (b) 5622 quadratic 
tetrahedral mesh. 
 
 

Figures 2(a) and (b) illustrate the error of the 
first four modes in the cavity (the (1,1,0), (1,1,1), 
(1,2,0), and (1,2,1) modes, and their degenerate 
partners), as the mesh is refined for H0 and H1 
basis functions.  The error is expected to converge 
as 2( )pO h  for the Galerkin procedure.  Thus, a 
reference line is included.  It is interesting to note 
that the (1,1,0) mode appears to super-converge.  
It is not clear why this is the case.  Figure 2(c) 
illustrates the error in the predicted resonant 
frequency of the (1,2,0) and (1,2,1) modes for the 
coarsest mesh (2 elements on an edge) as the basis 
order is increased from p = 0 to 3.  In each case, 
the error is observed to be converging as 2( )pO h , 
as anticipated for the DGFETD method. 

The next example studied is a cavity resonator 
loaded with a dielectric ring, as illustrated in Fig. 3 
[29].  The rectangular PEC cavity has a dimension 
of 324 mm x 121 mm x 43 mm.  The dielectric 
ring has an inner radius of 16.65 mm, and outer 
radious of 26.75 mm.  The ring is sitting on the 
bottom of the cavity, but only has a height of 39 
mm.  The dielectric constant of the ring is 9.8.  
Again, the DGFETD method was used to extract 
the resonant frequencies of the loaded cavity.  The 
cavity was excited in a similar manner as in the 
previous study.   

The cavity was discretized with curvilinear 
second-order tetrahedron (10 nodes per 
tetrahedron).  Here, two different meshes are 
presented.  The first consisted of 722 quadratic 
tetrahedra.  The second mesh consisted of 5,622 
quadratic tetrahedra. (Note that curvilinear 
quadratic tetrahedra were used to more accurately 
resolve the ring geometry.)  The basis function 
order was increased from p = 0 to 3 in each case.  
The error of the first 4 modes is presented in 
Figures (a) and (b) for the two meshes.  A 
reference result was simulated using a denser 
mesh and high-order basis. 

It is distinctly observed that for the coarse 
mesh, the error of the higher-order modes stagnate 
beyond p = 1.  The reason for this is that the error 
is dominated by the boundary error of the surface 
of the dielectric ring.  It appears that the lowest 
order mode is less dependent on the ring surface.  
The accuracy of the simulation could be improved 
by using higher-order tetrahedral elements.  
Unfortunately, such a meshing scheme was not 
available.  Observing Fig. 4(b), the finer mesh 
leads to improved convergence to better than four 
digits of accuracy.  If the basis order were 
increased further, the error will again stagnate due 
to the boundary error. 
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Table 1:  Resonant frequencies of the PEC cavity 
loaded with the Dielectric ring as computed via the 
DSI, NFDTD, FETD, and DGFETD methods  († 
reference [29]) 
 

Mode DSI† NFDTD† FETD† DGFETD 
k01 0.952 0.952 0.9518 0.9518 
k02 1.415 1.415 1.420 1.4151 
k03 1.608 1.612 1.615 1.6109 
k04 2.025 2.025 2.026 2.0257 

 
 

     Table 1 lists the resonant frequencies of the 
four modes to 5 digits calculated by the DGFETD 
method.  As a reference, the resonant frequencies 
computed via the Discrete Surface Integral (DSI), 
the Non-Orthogonal FDTD (NFDTD), and a 
finite-element time-domain (FETD) method based 
on the vector wave equation are also provided.  
This data was obtained from [29].   
     The next set of problems involves unbounded 
domains that are terminated by the perfectly 
matched layer absorbing boundary condition.  The 
first example is a parallel plate waveguide.  The 
waveguide had PEC planes bounding the top and 
bottom boundaries.  The side walls of the guide 
were PMC planes.  The waveguide was discretized 
via rectangular hexahedron, which had 1 cm edge 
lengths.  The waveguide was also meshed with 
tetrahedron with ~1 cm edge lengths. 
     The ends of the waveguide were terminated 
with PML layers.  The TEM mode was excited in 
the guide via a surface current density.  The time-
dependent current had a Gaussian pulse time-
signature with a 15 GHz bandwidth.  The fields 
computed along the waveguide were Fourier 
transformed.  The error of the phase and 
magnitude of the computed field relative to the 
exact field was computed.  It is noted that the 
PML was tuned so that the PML reflection error 
was less than the computational error.  Figure 5 (a) 
illustrates the maximum phase and magnitude 
error in the fields recorded over the frequency 
range of 0 to 15 GHz as a function of the order of 
the mixed-order curl-conforming basis functions.  
Typically, the maximum errors occurred at the 
highest frequencies.  Exponential convergence of 
the solution is observed.  It is noted that 6 digits of 
accuracy are realized for 4th order basis functions 
at this level of discretization.  Figure 5 (b) 
illustrates the relative phase error for the 
tetrahedral mesh.  This error is commensurate with 
that observed via the hexahedral mesh. 
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Fig. 5 Error in the electric field excited in a parallel 
plate waveguide discretized with (a) hexahedral, and (b) 
tetrahedral cells with 1 cm edge lengths.  The maximum 
error over the 0 – 15 GHz frequency range is recorded 
as a function of the basis order. 

 
     Next, a more systematic study of the reflection 
error of the PML is presented.  The parallel plate 
waveguide geometry is used again for this 
purpose.  To extract the reflection error for the 
PML, a reference parallel plate waveguide was 
used that was sufficiently long so that the 
simulation would cease before reflections from the 
terminating boundary wall would return. 
     When applying the PML to FDTD applications, 
the PML is not actually perfectly matched since 
the discrete electric and magnetic fields are 
staggered in both space and time.  As a 
consequence, the PML constitutive parameters 
must be spatially scaled to avoid large reflection 
errors.  In the DGFETD formulation, the discrete 
electric and magnetic fields are co-located in both 
space and time.  Thus, the PML is matched in the 
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discrete space. Discretization errors will still lead 
to reflection error.  However, spatial scaling is not 
as imperative, and thinner PML layers can be 
used. 
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Fig. 6. Reflection error due to the PML termination of 
the parallel plate waveguide versus the PML 
conductivity ( 1κ = ) (a) for 2 and 4 cell thick PML 
layers with constant PML profile (m = 0), and      (b) for 
a 4 cell thick PML with a polynomial scaled PML 
profile (m = 0, and m = 2). 

 
The reflection error due to the PML as a 

function of the PML conductivity is presented in 
Fig. 6.  The simulations used for Fig. 6 (a) assume 
PML parameters with a constant profile.  Cases 
are presented where the PML was 2 and 4 
hexahedral cells thick.  H0, H2, and H4 curl-
conforming basis functions were employed.  The 

exact reflection error is also illustrated in the plot, 
where 
 2 /( 1)(Exact) d mR e ση− += , (54) 
where, d  is the thickness of the PML slab (in 
meters), σ  is the normal PML conductivity, η  is 
the free-space wave impedance, and m is the 
polynomial scaling factor of σ .  The PML 
reflection error is dominated by the reflection error 
at the back PEC wall (namely, due to a round trip 
of the wave through the PML) for sufficiently 
small values of sigma.  As sigma becomes 
sufficiently large, the reflection error levels off 
due to discretization error of the fields.   

It is observed that increasing the basis order 
dramatically improves the reflection error.  
Though, it is also striking that increasing the 
thickness of the PML bears only a few dB 
improvement in the minimum reflection error.  
This implies that the bulk of the reflection error 
occurs at the PML interface boundary. In an 
attempt to improve this, σ  is scaled using 
polynomial scaling [28].  Quadratic scaling is 
compared to a constant profile.  It is found that 
this improves the reflection error by approximately 
10 dB. 

The final example is the extraction of the 
scattering parameters of a printed microstrip patch 
antenna printed on a dielectric substrate.  The 
dimensions of the patch antenna are given in [30].  
The antenna was simulated using both the FDTD 
method and the DGFETD method.  The FDTD 
lattice was terminated with a tuned CFS-PML 
absorbing media [27, 28] that were 10 cells thick.  
The DGFETD mesh was terminated using the 
proposed PML scheme that were 2 cells thick.  
The FDTD simulations were performed with 
(65x60x17) lattice grid cells (FDTD(A)), and a 
refined mesh of (191x111x31) lattice grid cells.  
The DGFETD simulations were performed with 
780 hexahedron and H3 basis (DGFETD(A)), and 
with a finer discretization consisting of 3,120 
hexahedron and H2 basis (DGFETD(B)).  A cross 
section of the mesh with 780 hexahedron is 
illustrated in Fig. 7.  The microstrip line was 
excited by a soft current source placed under the 
microstrip.  The line was matched via the PML 
boundary.   

The magnitude of the reflection loss (S11) is 
presented in Fig. 8 as computed by the FDTD and 
DGFETD methods each with two successive 
refinements.  FDTD (A) has the most significant 
error.  DGFETD(A) is also not yet converged.  
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There is good agreement with the finer FDTD and 
DGFETD discretizations. 

 

 
Fig. 7. Cross sectional view of the microstrip patch 
antenna fed by a microstrip line, discretized with the 
780 cell hexahedral mesh. 
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VII.  CONCLUSIONS 
A novel Discontinuous Galerkin Finite-

Element Time-Domain (DGFETD) method has 
been presented in this paper.  The DGFETD 
method is based on a spatial decomposition of the 
problem domain into non-overlapping sub-
domains.  A Galerkin formulation based on 
Maxwell’s curl equations is imposed over each 
sub-domain.  Each sub-domain is discretized 
independently using high-order hierarchal curl-

conforming basis functions to discretize both the 
electric and the magnetic field intensities.  The 
continuity of the fields across sub-domain 
boundaries is weakly enforced via boundary 
integral terms.  By using curl-conforming basis, 
only basis functions associated with topologies 
that lie on the sub-domain boundary (i.e., face and 
edge basis functions) couple.  The use of mixed-
order curl-conforming basis avoids spurious 
solutions and the need for penalty methods.   

The DGFETD method is a locally 
implicit/globally explicit method.  That is, local to 
each sub-domain, a matrix inversion must be 
performed.  However, since the sub-domains are 
generally quite small, this can be efficiently done 
via a LU-factorization.  The global system of 
equations, which is superposition of all the sub-
domains, is then solved via an explicit time-
stepping algorithm.  High-order Runge-Kutta (RK) 
schemes were used for this purpose. 

For open region problems a perfectly matched 
layer (PML) absorbing boundary based on a 
stretched coordinate formulation was presented.  
PML absorbing layers have controllable accuracy, 
and are well suited for a high-order method.  Since 
the electric and magnetic fields are co-located in 
both space and time, the scaling of the constitutive 
parameters is not necessary.  In fact, reflection 
errors on the order of 0.001 % are possible with 
PML layers that are only 2 cells thick.  However, 
it was shown that scaling the parameters can 
moderately reduce the reflection error. 

Through numerical validation, it was 
demonstrated that the proposed DGFETD method 
does provide exponential convergence.  It was also 
shown that the dispersion error can be 
dramatically reduced.  This has great advantage 
when solving large scale problems, where phase 
errors are accumulated over long propagation 
distances.  Unlike symplectic integration schemes, 
RK methods are also dissipative.  However, it was 
also shown that the magnitude error is 
commensurate with the phase error, and the 
precision can be controlled via the high-order 
scheme. 

Finally, since the DGFETD method is based 
on a spatial decomposition of the domain, and 
local solutions within these sub-domains, it is a 
naturally parallel algorithm.  The most efficient 
parallel implementation of the algorithm is based 
on a distribution of sub-domains to processors 
based on contiguous non-overlapping domains of 
sub-domains.  This will be the topic of a future 
publication. 
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