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Abstract─ In this paper we review a novel Domain 
Decomposition (DD) approach, called the 
Characteristic Basis Function Method (CBFM), 
which tackles large-scale electromagnetic 
problems by generalizing the concept of principle 
of localization that forms the cornerstone of 
asymptotic methods. The paper shows that the 
problem of having to deal with large matrices that 
arise in the conventional formulation of large  
problems with the Method of Moments (MoM)  
can be obviated, by dividing the original large 
problem into a number of smaller sub-problems 
that are more manageable to handle. However, 
unlike the conventional DD approaches that 
typically rely upon iteration algorithms to account 
for the inter-coupling between the subdomains, the 
CBFM tackles the problem with direct solvers 
instead. It is possible to do this in the context of 
CBFM, because it reduces the original large 
system matrix into one whose size is orders of 
magnitude smaller, and is appropriately called the 
“reduced matrix.” Furthermore, an important 
salutary feature of CBFM is that the algorithm is 
naturally parallelizable, an attribute that 
distinguishes it from many other CEM solvers, and 
makes it well suited for parallel platforms that 
have become ubiquitous in recent years. This, in 
turn, enables us to take advantage of the power of 
these platforms and to solve, numerically 
efficiently, large problems that were well beyond 
our reach in the past. The paper also shows that 
the basic concepts of CBFM are quite general, and 
they not only apply to MoM, but can also be 
tailored for both FEM and FDTD.  
  
Index Terms─ Characteristic Basis Function 
Method (CBFM), Domain Decomposition, 

Method of Moments (MoM), Finite element 
Method (FEM), Finite Difference Time Domain 
(FDTD). 
 

I. INTRODUCTION 
Solutions of large problems that are described 

by a large number of Degrees of Freedom (DoFs) 
are of considerable interest in Computational 
Electromagnetics. Presently, iterative techniques, 
coupled with fast matrix-vector multipliers, form 
the backbone of leading Method of Moment 
(MoM) solvers, for instance, the Fast Multipole 
Method (FMM) and similar techniques [1-4] that 
are used for such problems. Historically, the 
asymptotic methods, such as the GTD [5] 
dominated the electromagnetics scene for several 
decades, and were the only viable options 
available to us when we wanted to tackle 
problems, whose dimensions were very large 
when compared to the wavelength. However, it is 
well known that while the asymptotic methods can 
handle smooth, perfectly conducting objects with 
relative ease—regardless of how large they may 
be—the methods do suffer from several inherent 
limitations, especially when dealing with 
arbitrarily shaped, inhomogeneous, and multiscale 
objects. Some of these limitations are: the GTD 
diffraction coefficients are available only for a 
limited number of canonical geometrical shapes, 
such as PEC wedges and smooth surfaces with 
large radii of curvature; resonant structures, for 
instance re-entrant cavities, or Frequency Selective 
Surfaces (FSSs), are not amenable to convenient 
analysis via asymptotic methods, regardless of 
their size; and, multiscale and material 
inhomogeneities are always problematic because 
they do not lend themselves to asymptotic analysis 
owing to the fact that the wave phenomena in 

204

1054-4887 © 2009 ACES

ACES JOURNAL, VOL. 24, NO. 2, APRIL 2009



 

these structures do not satisfy the ansatz upon 
which the asymptotic methods are based. Attempts 
to modify the GTD, either by using techniques 
such as the Physical Theory of Diffraction PTD 
[6], or by hybridizing it with rigorous numerical 
methods [7], have met varying degrees of success. 
This is because either these approaches do not 
fully overcome the fundamental limitations of the 
GTD—alluded to above—or they are not 
sufficiently robust.   
     In this paper we review a novel Domain 
Decomposition (DD) approach, called the 
Characteristic Basis Function Method (CBFM) [8-
10], which tackles large-scale electromagnetic 
problems by generalizing the concept of principle 
of localization that forms the cornerstone of 
asymptotic methods. For instance, in Physical 
Optics (PO) we simply use the local property of 
the surface in the neighbourhood of a “bright 
point” to compute the field reflected from the 
surface, instead of solving a large dense matrix 
equation arising in MoM, which assumes that each 
of the subdomain basis functions fully couples to 
all other similar basis functions in a global sense. 
One consequence of this is that, for large 
problems, the system matrix arising in MoM is 
large as well as fully populated, and burdens both 
the CPU time and the memory. As shown in this 
paper, this problem can be obviated, however, by 
dividing the original large problem into a number 
of smaller sub-problems that are more manageable 
to handle. However, unlike the conventional DD 
approaches that typically rely upon iteration to 
account for the inter-coupling between the 
subdomains, the CBFM tackles the problem with 
direct solvers instead. It is possible to do this in 
the context of CBFM, because it reduces the 
original large system matrix into one whose size is 
orders of magnitude smaller, and is appropriately 
called the “reduced matrix.” Furthermore, an 
important salutary feature of CBFM is that the 
algorithm is naturally parallelizable, an attribute 
that distinguishes it from many other CEM 
solvers, and makes it well suited for parallel 
platforms that have become ubiquitous in recent 
years. This, in turn, enables us to take advantage 
of the power of these platforms and to solve, 
numerically efficiently, large problems that were 
well beyond our reach in the past. We also 
mention that the basic concepts of CBFM are quite 
general, and they not only apply to MoM, but can 

also be tailored for both FEM and FDTD. 
Although CBFM was originally developed for 
MoM solution of microwave circuit problems [9], 
and has been applied to quasi-static problems in 
the context of FEM [11], we restrict our attention 
in this paper solely to scattering and radiation 
problems. 
     The organization of this review paper is as 
follows. In Sec. 2 we present the details of CBFM 
for MoM problems to lay the foundations of the 
method. We show how we can use the concepts of 
domain decomposition and high-level or macro 
basis functions to significantly reduce the size of 
the MoM matrix, which can then be solved 
directly, without resorting to iteration. Next, in 
Sec. 3, we present two numerical examples of the 
application of CBFM. Following this, in Sec. 4, 
we describe the basic steps of parallelization of the 
CBBOR (Characteristic Basis Body of 
Revolution) code. The next section, Sec. 5, 
discusses an efficient technique for handing 
locally modified objects in the context of CBFM. 
Adaptations of the CBFM concept to FEM and 
FDTD, are presented in Secs. 6 and 7, 
respectively, which have their own unique 
features. Finally, we refer to some recent 
developments in CBFM and present some 
summary conclusions in Sec. 8. 
 

II. CBFM FOR MOM PROBLEMS 
     Let us begin by describing the principle of 
localization as it is incorporated in CBFM. 
Suppose we have an arbitrary scatterer illuminated 
by a plane wave, as shown in Fig. 1.  

 
(a)                                           (b) 

Fig. 1.  (a) Arbitrary scatter illuminated by a plane 
wave; (b) Dividing original object into blocks. 
 
     Let us consider the behavior of the induced 
current at a point P, which resides on the surface 
of the object. Then, we could approximate the 
current at P by invoking the PO, which says that 
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this current can be approximately expressed as 
2 in H× , provided the principle radii of curvature 
of the surface are large. If the point P is located on 
an edge, we can use the GTD to find the field 
scattered from P, again by using the properties of 
the edge in the vicinity of P, and making suitable 
approximations if the geometry there is not one of 
the canonical shapes for which we can derive the 
diffraction coefficients. (Note: If we desire to find 
the approximate induced current near P, we have 
to employ the PTD instead.) We can either move 
the point P around to determine the induced 
current on the entire body by following the above 
procedure, or we can simply go directly to the far 
scattered field by using the ray theory approach, 
rather than by integrating the induced current on 
the scatterer. The procedure, just described, is an 
extreme limit of localization, which works well at 
very high frequencies, provided we are dealing 
either with smooth bodies, or with those that have 
canonical edge geometries and are amenable to ray 
type of analysis. If, however, these conditions are 
violated by the geometry of the object, then the ray 
theories do not provide a systematic way to 
generalize the analysis, or enable us to handle 
arbitrary objects whose geometries may have 
multiscale features. The CBFM generalizes the 
above concept, by first using DD to break up the 
original object into “blocks,” and then viewing 
entire subdomains as the local regions upon which 
macro basis functions are defined in a manner 
explained below. Following this, the interactions 
between the blocks are accounted for not via the 
use of iteration, as is the case in conventional DD 
procedures, but by rigorously incorporating them 
in the formulation by using the Galerkin’s method 
to generate a reduced matrix, as is further 
explained below. The procedure described above 
is very general, and is capable of handling 
arbitrarily shaped objects, which can even be 
multiscale. 
     Let us now describe the CBFM in a little more 
detail. Its formulation starts with the conventional 
MoM procedure, whereby the mixed potential 
integral equation is discretized into a matrix 
equation: 

⋅ =Z I V ,                                 (1) 
where Z denotes the conventional MoM 
impedance matrix; I is the unknown current 
vector; and, V is the excitation voltage vector. 

Typically, the desired solution I is represented in 
terms of the RWG basis functions using a 
discretization of λ/10; hence, the number of 
unknowns grows rapidly with the increase in the 
size of the object being analyzed. This, in turn, 
forces us to resort to iterative techniques, which 
often offer the only viable option for handling 
large scatterers. However, the CBFM circumvents 
this problem by working with high-level basis 
functions Ii (i=1,…,N), called the Characteristic 
Basis Functions (CBFs), and representing I as: 

1

N
i ii

c
=

= ∑I I ,                           (2) 

where ci’s denote the weights of these currents. 
Note that each Ii would have non-zero entries only 
at the positions belonging to a sub-block. When Ii 
is normalized, the value of ci provides a measure 
of the coupling effects between the currents 
induced on the blocks. This observation is useful 
in determining N, the total number of 
characteristic bases that would be needed to yield 
an accurate solution to the problem at hand.  
     The primary bases are computed by solving a 
series of smaller matrices, arising from the 
application of the MoM procedure to the sub-
blocks, using a spectrum of plane wave excitations 
as incident waves. This is done by anticipating the 
fact that we would be solving the scattering 
problem for multiple excitations anyway, and 
arguing that we might as well formulate the 
reduced matrix in a way such that, once generated, 
it can be re-used for different excitations without 
modification. This is also a powerful feature of the 
CBFM, which can solve the multiple incidence 
problems very efficiently, once the reduced matrix 
has been L-U factored. This is in contrast to 
iterative techniques, which must start the 
procedure from the beginning each time the RHS 
is changed. (Note: A slightly modified version of 
this procedure is used in Microwave circuits, 
where the secondary (see [9]) and even tertiary 
basis functions have been proposed, instead of just 
the primaries.)  
     As mentioned earlier, we begin by dividing the 
geometry of the object to be analyzed into blocks, 
for instance M in number (see Fig. 1b). Next, we 
derive the primary characteristic basis functions by 
illuminating the isolated blocks with plane waves, 
say NPWS in number (see Fig. 2), which impinge 
upon the object at intervals of θ and φ, say every 
20 degrees, for two orthogonal polarizations. 
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Fig. 2.  Spectrum of Plane Waves incident  on a single 
block. 
 
     We can be flexible in choosing the number of 
these incident waves, and can also include a part 
of the invisible range of the spectrum—if 
desired—since the SVD will downselect the 
number of basis functions to remove the 
redundancy and will retain only as many as needed 
to represent the unknown current with a certain 
degree of accuracy, determined by the level of the 
SVD threshold we set. In addition, the 
decomposition of the object into blocks is also 
somewhat arbitrary, and there is no limitation on 
the number and size of the blocks. The upper size 
is bounded by the available RAM needed for the 
unknowns in the self-blocks that are solved to 
generate the CBs. Typically, the block size ranges 
from a few hundred to a few thousand sub-domain 
type of unknowns. As pointed out earlier, the 
advantages of following this procedure is that it 
enables us to solve for multiple excitations using 
the same reduced matrix with a significant time-
saving, since only the RHS of the reduced system 
needs to be computed for a new excitation.  
     For the sake of illustration, we consider a thin 
plate which is divided into 25 blocks, shown in 
Fig.3. Although, in general, the blocks can have 
different sizes, we assume that they have 
approximately the same dimension Nb in terms of 
number of unknowns. To mitigate the problem of 
spurious edge effects in the CBs, introduced by the 
truncation, we extend all blocks by a fixed amount 
(typically 0.2λ to 0.4λ) in all directions, except 
when the boundaries are free edges.  

 
 

 
Z

 
 

Fig. 3.   Geometry of a PEC plate divided into 25 
blocks. Extended blocks are duplicated by dashed lines. 
 
The final step is to generate the reduced KM×KM 
MoM matrix for the KM unknown complex 
coefficients ck by following the usual Galerkin 
procedure in the context of the Method of 
Moments. Once the induced surface current 
distribution for the entire structure has been 
derived, the electrical parameters such as RCS, 
scattered field, etc., can be computed in the usual 
manner. 
     The most computationally intensive steps of the 
proposed method are associated with the 
generation of the primary CBs and the 
construction of the reduced matrix reduction, 
though the latter task can be speeded up by 
invoking the symmetry of the matrix.  
     Once we have generated the reduced matrix, 
we proceed to factorize it. Note that generation of 
CBs is one of the time-consuming and memory-
demanding tasks. It requires the filling the self-
impedance matrix Zii for the extended block and 
its factorization in an LU form. Since the CBs are 
independent of the incident angles, this 
factorization needs to be performed only once, and 
the resulting primaries can be reused for multiple 
incident angle directions. This implies that the 
final reduced matrix (5) is independent of the 
excitation, and this fact enables us to handle a 
problem involving multiple excitations by only 
solving the reduced system for the new RHS 
(excitation). Moreover, we can store the reduced 
matrix on the hard disk, and reuse it whenever we 
need to analyze a new excitation. Furthermore, if 
the geometry within a particular block is modified, 
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only the CBs belonging to this block need to be 
recomputed.  
     The technique described above realizes a 
saving in the CPU running time and RAM 
requirement compared to the conventional MoM 
technique. The memory requirement is now 
proportional to the square of the self impedance 
matrix of the extended block, and this is different 
from that in the conventional MoM where the 
storage requirement is related to the square of the 
dimension of the entire impedance matrix. 
Moreover, we realize a consistent saving in the 
execution time, which reduces to O(M(Nbe)3) 
instead of O(N3). 
     As mentioned earlier, the generation of CBs is 
one of the most computationally intensive tasks in 
CBFM. We will now briefly discuss two 
techniques for reducing this time, both of which 
are physics-based.  
     The first approach [12] is best suited for 
geometries that are relatively smooth ─ though 
they may have edges ─ but are not multiscale. In 
this approach we simply use the P.O. solutions for 
different incident angles as the characteristic basis 
functions, totally bypassing the matrix solution 
that we would employ in the conventional 
procedure for CB generation. An added advantage 
of using this approach is that these PO/CBs no 
longer suffer from the spurious edge effects ─ 
even after the SVD ─ as do the CBs generated by 
matrix methods. We point out that even if the 
geometry under consideration has true edges, we 
can still accommodate this situation by using 
relatively small-size blocks near the edges. This is 
because a superposition of these basis functions 
can still pick up the edge behavior of the current, 
despite the fact that none of the individual basis 
functions possess this behavior.   
     The second method [13], which is more general 
than the one we just described above, works with a 
sparsified version of the matrix for the subdomain 
that we need to solve to generate its CBs. In this 
approach, we simply use a threshold value to 
discard the matrix elements that fall below this 
value. This operation obviously sparsifies the 
matrix, and not only enables us to employ a 
sparse-LU factorization scheme, but to also reduce 
the storage requirement significantly. 
     In the next section we present some numerical 
examples to illustrate the application of CBFM to 
scattering problems. 

III. NUMERICAL RESULTS DERIVED 
WITH CBMOM (CHARACTERISTIC 

BASIS METHOD OF MOMENTS) 
 
3.1 Plane wave scattering by a 4λ radius PEC 
Sphere 
     To validate the accuracy of the method we will 
compare the CBFM solution with the analytical 
one for a PEC sphere of radius 4λ, at a frequency 
of 300 MHz. The object is excited by a normally 
incident (θ=0, φ=0) theta-polarized plane wave. 
The discretization is carried out by using 
triangular patches with a mean edge length of 
0.1λ, resulting in a problem with 85155 
unknowns. The geometry is divided into 16 blocks 
with an average size of 8000 unknowns. Each 
block is extended by ∆=0.4λ in all directions, and 
analyzed for a spectrum of plane waves incident 
from 0 180O Oθ≤ <  and  0 360O Oφ≤ <  , 
with 20N Nθ φ= = . These results in a total of 800 
CBs; but, after the SVD, only 310 are retained in 
each block. The 85155×85155 MoM matrix is then 
reduced to only 4925×4925, which is solved 
directly.  
     As we mentioned earlier, the construction of 
the CBs can be speeded up, with little loss of 
accuracy, by using a sparsified version of the self-
blocks—that retain only the near-region 
interactions—rather than working with the full 
versions of these blocks. It should be realized that 
we are only generating the basis functions at this 
point and, hence, they themselves need not be the 
rigorous solutions of the self-block problems, so 
long as they span the solution space, they need not 
strictly be solutions of the original self-blocks. To 
validate this concept, we have analyzed the 
problem at hand by using both dense and sparse 
matrix approaches. The use of the latter allows us 
to reduce the computational cost by a factor of 
approximately 4. The bi-static E- and H-plane 
RCS results are presented in Figs. 4(a) and 4(b), 
respectively, using the dense and sparse 
approaches, as well as the MIE series. The 
agreement is seen to be good for all scattering 
directions, including the grazing angles. 
     Next, we turn to some example problems 
involving bodies of revolution (BORs), to which 
the CBFM has been successfully applied. The 
BOR geometry offers the advantage that we can 
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factor out the azimuthal variation and thereby 
reduce a 3-D/BOR problem into a number of 2-D 
ones.  Thus we can easily solve problems with 
very large dimensions ─ that are hundreds if not 
thousands of wavelengths. In Fig. 5 we show a 
finite-length cylinder, which is subdivided into 
two blocks to illustrate the partitioning scheme. 
     Figure 6 shows the flowchart of the CBF_BOR 
code, which combines the CBF algorithm with the 
BOR code. The above code includes five steps: (i) 
Data entry--input data, input (generate) structure, 
define indices for vectors; (ii) Call “Split 
structure” subroutine--split the original structure 
into a number of smaller blocks; (iii) Call 
“Generate CBFs” subroutine: the CBFs for each 
mode of each block are obtained and stored; (iv) 
Call “Generate reduced matrix” subroutine--
compute the reduced matrix for each mode; (v) 
Call “Solve reduce matrix” subroutine--solve the 
reduced matrix system for each mode and sum the 
results for all modes to derive the final results. 

3.2 Numerical Example of CBF_BOR Code 
     We now present some numerical examples 
obtained by using the CBF_BOR code for the test 
geometry of a PEC sphere. The relevant 
parameters are: 
• Radius of the sphere = 6.755 wavelengths  
• Overlap region between blocks = 1 

wavelength 
• Number of incident angles for generating the 

CBFs = 100  
• Threshold for SVD = 1000 (ratio of largest to 

smallest singular values retained). 
     Comparisons with the results obtained by using 
the non-CBF version (single block) code are 
included for the purpose of validation of the CBF 
result, and demonstrating that it is not sensitive to 
the number of blocks in which the object is 
divided. Both the induced current distributions and 
the far field results are presented in Figs. 7a 
through 7d for the threshold value of 1000. 
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Fig. 4.   RCS of radius PEC sphere at 0.3GHz: (a) E-plane; (b) H-plane. 

 
Fig. 5.  BOR geometry of a finite cylinder and the partitioning scheme for two blocks. 

first block 

second block 

Entire geometry 

………. ………. 

The last unknown for  
the t-component The last unknown of the first block is removed 

The first unknown for the t-component 

209MITTRA: CHARACTERISTIC BASIC FUNCTION METHOD



 

 
 
 
 

 

Solve reduced matrix system module
Do loop 1: # of modes

(1) LU decomposition of the reduced matrix
(2) Do loop 2: # for different excitations

i. Calculate right-hand vector (incident field)
ii. Solve reduced matrix system
iii. Add present solution to the total current 
iv. Check RMS error
v. Compute far field

End do loop 2
End do loop 1  

 
Fig. 6.  Flowchart for the CBF_BOR code. 

Generate  CBFs module
Do loop 1:# of blocks (self extended block)------(parallelization here, each block is 

(1)Call ZFILL: fill self (extended) block matrix 
(2)Do loop 2:# of modes 

i. LU decomposition of self extended block matrix 
ii. Do loop 3:# of different incident angles(tapered incident wave) 

a. Fill excitation vector 
 b. Solve matrix equation 
         End do loop 3 

iii. Call SVD to derive reduced number of CBFs

End do loop 1 

Generate reduced matrix module

1. Get the stored diagonal sub-matrices of the reduced matrix 
2. Do loop1:# of test blocks ---- (parallelization here; the computation will be distributed evenly 
on different processors) 
 Do loop 2:# of source blocks 
  (1) Fill coupling matrix linking test and source blocks 
  (2) Do loop 3: # of modes 

Generate the off-diagonal sub-matrices of the reduced matrix using the 
truncated CBF vectors and coupling matrix 
End do loop 3 

  (3) Release memory for this coupling matrix 
End do loop 2 

End do loop 1 
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Fig. 7. The Jt current on the cylinder in Fig. 5 due to theta excitation. Axial incidence (a) 2-block, (b) 7-block. The 
Jphi current on the cylinder in Fig. 5 at φ =90 due to θ excitation. Axial incidence (c) 2-block. (d) 7-block. 

  
 

     Next, we illustrate the effect of changing the 
SVD threshold on the accuracy of the results. In 
Fig. 8 we show the results of progressively 
varying this threshold value, beginning from 100 
and moving upward, steadily improving the 
accuracy of the current distribution in the process. 
We notice from these plots, which compare the 
direct solution with those obtained by using the 
CBF/BOR code, that a value of 1,000 marked in 
the figures as original is adequate for achieving 
numerical convergence. Of course, the far-field is 
more forgiving, and we can probably use a 
somewhat lower value for the threshold, without 
compromising the accuracy of the far field pattern 
noticeably, as may be seen from Fig. 9. 
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(c) 
Fig. 8. The φ-φ current on a sphere along the generating 
arc for axial incidence. (a)Threshold value for SVD is 
100. (b) Threshold valuefor SVD is 500. (c) Threshold 
value for SVD is 1000. 
 

 
(a) 

 
(b) 

 
Fig. 9. The θ-θ bistatic RCS of a sphere.  (a)Threshold 
for SVD is 100. (b) Threshold for SVD is 250. 
 
     Obviously, lowering the threshold increases the 
number of CBs we retain and, hence, the size of 
the reduced matrix and the associated 
computational burden. Numerical experiments 
involving a variety of different problems have 
shown that a good choice for the SVD threshold is 
the value we have mentioned above, namely 1000. 

 
Table 1:  First five letters of the Greek alphabet 

 
Threshold Value Name 

100 33 
250 43 
500 51 

1000 54 
2000 55 
5000 58 

 
     We will now describe the parallel 
implementation of CBF/BOR, which involves four 
steps, as detailed below. 
 
 

IV. STRATEGY FOR PARALLEL 
IMPLEMENTATION OF CBBOR 

     As mentioned earlier, one of the important 
attributes of the CBFM is that the algorithm is 
easily parallelizable. Although we do not present 
the details of the parallelization algorithm in this 
review work, we outline just the basic steps here. 
First, we recognize that the generation of the CBs 
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can proceed independently, on separate 
processors, since these processors do not need to 
communicate with each other at this step. Once the 
CBs have been generated, the next step is to 
construct the reduced matrix by using the Galerkin 
approach, which entails matrix-vector 
multiplications involving the CBs, and the self- as 
well as off-block matrices. A bulk of these 
processes can also be readily parallelized, because, 
at no point we need to deal with the entire MoM 
matrix concurrently.  
We now briefly review the parallelization process 
for the CBF_BOR code which basically includes 
four steps:  

(i) generating and splitting geometry;  
(ii) generating CBFs;  
(iii) generating reduced matrix;  
(iv) solving the reduced matrix system.  

 The parallelization is implemented in parts (ii) 
and (iii), with computation burden evenly 
distributed among different processors.  
1) Generating and splitting the geometry 
All processors participate in the tasks of geometry 
generation and splitting, so that they will have the 
needed parameters and geometry data, obviating 
the need for communication among processors. 
2) Generating CBFs 
If the number of blocks is less than the number of 
available processors, each processor will perform 
the computation for one block.  In each processor, 
the extended self-block matrix is filled and the 
matrix system is solved to generate the CBFs for 
this block. The diagonal sub-matrix of the reduced 
matrix for this block is then obtained by using the 
self-block matrix and CBFs. The memory for the 
self-block matrix is then released. Next, the CBFs 
for this block are broadcast to every processor. 
The diagonal sub-matrix of the reduced matrix is 
sent to only one master processor. Figure 10 
illustrates the implementation of this procedure. 
Of course, if the number of blocks is larger than 
the number of available processors, then each 
processor would perform the computation for 
several blocks 
3) Generating the reduced matrix 
The generation of the reduced matrix entails the 
linking of the test and source blocks to obtain the 
off-diagonal elements of the reduced matrix, and a 
parallel implementation of this process is carried 
out in accordance with Fig. 11 Each processor 
computes the coupling matrices in a row.  The off-

diagonal sub-matrices of the reduced matrix in one 
row are then obtained by using these coupling 
matrices and the CBFs matrices for all blocks on 
this processor. These off-diagonal sub-matrices are 
then sent to the master processor. 
4) Solving the reduced matrix system 
The reduced matrix system is solved only on the 
master processor. The far field calculation and 
data output operations are also handled by this 
processor. 
 

Fig. 10.  Parallel implementation for the generation of  
CBFs for BOR problem. 
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V. LOCALLY MODIFIED CBFM 
     Recall that the most computationally intensive 
task in CBFM algorithm is associated with the 
generation of the CBFs, which entails the filling 
and LU factorization of the MoM impedance 
matrix associated with the various blocks. To 
generate the high-level basis functions for a given 
block, the CBFM localizes the problem to the 
particular macro-domain of that block; hence, it 
does not need to account for the interaction among 
the various blocks at this stage. This feature offers 
great flexibility when modelling targets whose 
geometries are modified only locally, for instance 
to reduce (or enhance) its RCS. Consequently, this 
feature of CBFM has an important advantage over 
the conventional MoM or FMM, which must 
analyze the modified problem a new essentially 
from the very beginning even if only a small part 
of the geometry is altered. In contrast to the 
conventional methods, the CBFM only needs to 
re-work the block that is being modified to obtain 
a new set of CBFs for it, while bypassing this step 
for the other blocks whose macro-bases are stored 
in a file, and are reused to generate the reduced 
matrix. Furthermore, we can achieve consistent 
time-saving even during the process of generating 
the reduced matrix, because only the matrix 
elements that link the modified block to the rest of 
the structure need be re-computed.  
     Below we delineate the steps involved in the 
implementation of the CBFM to handle a locally-
modified object, which is depicted, symbolically 
in Fig. 12. The steps for modifying the blocks are 
presented in Fig. 13.  
     As an example we consider a plate problem 
which is locally modified, as shown in Fig.14, by 
introducing a hemispherical “bump” on the right 
side of the plate.  
     In Fig. 15 we present the bistatic RCS results 
for both cases, computed by using the 
conventional and LM/CBFM algorithms. We note 
from the above plot that the two results are 
virtually indistinguishable. 
 

VI. CHARACTERISTIC BASIS 
FUNCTION FOR FEM 

    To the best of our knowledge, a CBFM-type of 
procedure that leads to a reduced matrix generated 
by using characteristic basis functions—tailored to 
individual—sub-domains has not been employed 

in the past for the Finite Element-Method (FEM), 
until quite recently. Space does not permit us to 
discuss the procedure in minute details in this 
review paper on CBFM, and we refer the reader to 
[14] where they can be found. Here we only show 
a representative example of scattering by a sphere, 
and point out some important difference between 
the implementations of CBFM in MoM and FEM. 
     Figure 16(a) illustrates the CBFM procedure 
implemented in FEM. Let us assume that we 
decompose the original scattering problem into 
two blocks, as shown in Fig. 16(b). To generate 
the CBs for these domains we use fictitious 
dipoles residing on the surface of the object (see 
Fig. 16(c)), which is a sphere in this example 
though it could be arbitrary in general.  
     The incident fields at the interfaces of the sub-
domains are radiated by the dipoles in the absence 
of the scatterer. Note that this step is different 
from that followed in the MoM implementation of 
CBFM. 
     Next, as before, we apply the SVD procedure 
to retain only the non-redundant CBFs. The third 
step is to compute the CBFs in the various sub-
domains; by using the interface-based CBFs 
─which we just derived in the previous step─ for 
the incident fields. Following this, we apply the 
SVD procedure once again to select the post-SVD 
CBFs which we wish to retain. Finally, we 
construct the “reduced” matrix, using the 
Galerkin’s procedure, similar to that followed in 
CBMoM (Characteristic Basis Method of 
Moments). 
     We will now present the results for a test 
example, that of a sphere, which has been solved 
on a parallel platform. We remark here -without 
going into the details- that, in common with the 
MoM, CBFEM also tends itself to convenient 
parallelization. As shown in Fig. 17, the 
computational domain for the problem geometry 
in Fig. 16 is divided into 16 blocks.  
     The number of elements we have after using a 
uniform λ/10 discretization is 241,765 and the 
associated DOFs number of edge is 313,958. The 
final reduced matrix is only 16,016 and the result 
for the bistatic RCS, computed by using the above 
matrix, are shown in Fig. 18. The above are also 
compared with those derived by using the Mie 
series, as well as via an alternate numerical 
approach called the Backward-forward Domain 
Decomposition method [15]. 
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Fig. 11. Parallel implementation of reduced matrix generation.  
 

 
Modified geometry: Block II is being modified 

Fig. 12.  Geometry of an object, one of whose (Block-II) is being modified. 
 

Final reduced matrix on one processor 
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Load Project: 
1) Read block file ( each block has an option field) 
2) Option value must be 1->Redo, 0->Already 
done 
3) If all option fields are equal to 1 then a new 
excitation is being analyzed 
4) All new block’s definitions, not previously 
present, must be placed last 
Split Structure: 
1) If the block has already been analyzed, then 
load geometrical info only 
2) If the block has been modified, then obtain the 
new mesh 
Self Block Analysis: 
1) If the block has already been analyzed, then 
load the number of post-SVD CBFs 
2) If the block has been modified, then obtain the 
new set of CBFs 
Reduced-RHS Generation: 
1) Compute the reduced right-hand sides anew. 
The user might have added some new excitations 
Reduced-Matrix Generation: 
1) If all blocks have the option field equal to 1, 
then load the previously computed reduced-matrix 
2) If some blocks have been modified, then 
computed the relative row and column in the 
reduced matrix. Note: Since we compute the 
reduced-matrix by forcing symmetry, particular 
care must be exercised to avoid duplicated jobs. 
3) If some blocks have been modified, then load 
the previous reduced-matrix and modify it with the 
new entries. The modified block(s) can be placed 
in the middle of the reduced-matrix and the 
number of post-SVD used to generate these blocks 
can be different from that in the previous 
simulation. This results in a different size for the 
reduced-matrix and its indices are shifted.   

 
Fig. 13.   Steps for CBMOM modification. 

 

 
(a) 

 

 
 

(b) 
Fig. 14. (a) Plate Geometry. (b) Local Modification of 
the plate. 
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Fig. 15.   Bistatic RCS of the locally modified plate 
compared by asing the conventional and locally 
modified CBFMs. 
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(a) 

 

 
 (b)  

 

 
(c) 

 
Fig. 16. (a) Original scattering problem of scattering by 
a 4λ  diameter sphere. (b) CBFEM approach. (c) Dipole 
positions on the surface of the sphere. 
 
 
 
 

 
 

 

 
 
 
 
 

 
 

 

Input Parameters: 

Diameter 4 λ 

Incident Field ˆ exp( )inc
xa jkzE = −  

Element Size 
λ/10  
λ/20 (on boundary) 

Number of elements 114,304 
Number of edges 
(unknowns) 240,465 

Initial number of 
dipoles 45,996 

SVD Threshold 10-5  
Number of subdomains 
(Nd) 

16 

Number of interfaces 45 
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Analysis Parameters: 

Number of 
CBFs  
in each 
domain 

 Pre-SVD Post-SVD 
Ω1 1,733 1,221 
Ω2 1,907 1,515 
Ω3 1,914 1,502 
Ω4 1,739 1,228 
Ω5 2,128 1,348 
Ω6 1,371 989 
Ω7 1,383 994 
Ω8 2,108 1,370 
Ω9 2,120 1,327 
Ω10 1,369 972 
Ω11 1,383 971 
Ω12 2,108 1,337 
Ω13 1,729 1,224 
Ω14 1,914 1,517 
Ω15 1,918 1,517 
Ω16 1,739 1,229 

Size of the final 
reduced Schur 
matrix 
(Total number of 
CBFs  
on interfaces) 

 14,135 

 
Fig. 17.  Relevant parameters for the CBFEM solution 
of the 4λ diameter sphere. 
 
 

VII. DOMAIN DECOMPOSITION IN 
FDTD 

     Finally, we will present a novel approach [16] 
to solve large problems using the domain 
decomposition in the context of FDTD.  The 
strategy here differs significantly from that utilized 
in MOM or FEM, because it is unique to the time 
domain alone. We should point out that this is 
approach, which is tailored for large problems, is 
not suitable for problems in which there exist 
significant multiple interactions between the 
subdomains, as for instance when the object size is 
relatively small, of course such an object can be 
solved directly, without resorting to domain 
decomposition. 
     We begin by subdividing the geometry of the 
large object into smaller blocks, as in the past, but 
only in one dimension, say x, as shown in Fig. 19. 
We make sure that there is an overlapping or 
buffer region between two adjacent sub-domains 
(see Fig. 19). Next, we begin to analyze the 

problem from one end, say the left, and proceed in 
much the same way as we would in a TDR (time 
domain reflectometer). Specifically, we track the E 
and H fields as they traverse from left to right, 
including only the local interactions within a sub-
domain and not the mutual effects between two 
sub-domains at this point. (To do this, we 
terminate the interface of the sub-domain on the 
right with a PML.) We then proceed to interface-1, 
and record the time domain signatures of the 
tangential fields at the interface with the wave 
impinging upon it from the left. We then use this 
information to excite the sub-domain to the right, 
which is again terminated with a PML on its right. 
We repeat this procedure until we reach the end.  
     In many large problems, such as for instance in 
the case of two large antenna arrays separated by a 
large distance, we can terminate the procedure 
after just one pass, once we have reached the end. 
This is because the coupling between the two 
arrays is relatively weak and, hence, the level of 
the signal reflected from the second array is very 
small, i.e., essentially negligible.  
     However, we can have a different scenario, 
such as the one depicted in Fig. 20, where we wish 
to estimate the coupling of unwanted signals into a 
room with electronic devices, e.g., computers. In 
this case, we find that it becomes necessary to 
account for the reflected signal, at least through 
one round-trip, in order to improve the accuracy of 
the results. The results for the fields, computed by 
using the DD/FDTD approach, are shown in Figs 
21a and Fig. 21b, where they are also computed 
with the direct solution (see Fig. 21b). We note 
that the comparison is quite good. 
 
 

 
 

(a) 
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(b) 

 
Fig. 18. Comparison of CBFEM and Mie series r for 
the 4λ sphere problem. (a) Phi=90°. (b) Phi=0°. 
 
 

 
 

Fig. 19.  Domain decomposition scheme in the context 
of the FDTD. 
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Fig. 20. Geometry of the problem. 
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(b) 

Fig. 21. (a) Scattered Ex Field in the XY-Observation 
plane. (b) Field distributions at the center line of the 
observation plane Computed by using two reflections 
In the Domain Decomposition sc. 
 
     We observe that this type of approach can be 
quite useful for modelling the problem of remotely 
tracking the movements of targets in a room with 
brick walls, which can easily fall into the “large” 
problem category and, hence, is likely to benefit 
from the application of the DD/FDTD analysis. 

 
VIII. CONCLUSION AND FUTURE 

WORK 
     In this paper, we have reviewed a technique, 
based on the domain decomposition approach, for 
solving large problems, unlike the conventional 
domain decomposition schemes, which rely on 
iterative procedures, and hence often suffer from 
convergence problems. The characteristic basis 
function method (CBFM) yields a reduced-size 
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matrix, which is solved directly. Yet another 
important attribute of the technique is that it is 
general in nature, and can be tailored to apply to 
integral equation method as well as to FEM and 
FDTD algorithms. Finally, the CBFM is naturally 
parallelizable, which enables us to solve even 
larger problem in an efficient manner. 
     The method itself is still evolving and is 
currently an active research topic. Space does not 
permit us to discuss the various embellishments of 
the method, and we only provide a bibliography 
[17-53 ] that lists some of the contributions on the 
subject that have inspired the preparation of this 
paper. 
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