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Abstract─ The lifting wavelet like transform 
(LWLT) is applied to the fast multipole method 
(FMM) to complete the scattering analysis of 
three-dimensional (3D) objects. The aggregation 
matrix and disaggregation matrix are sparsified by 
the LWLT scheme in time. Numerical results for 
different shaped three-dimensional objects are 
considered. It is shown that the proposed method 
can speed up FMM with lower memory required.  
  
Index Terms─ Lifting wavelet like transform 
(LWLT), Method of moments (MOM), Fast 
multipole method (FMM), Electromagnetic 
scattering. 
 

I. INTRODUCTION 
As an efficient numerical algorithm for the 

analysis and computation of electromagnetic 
scattering by arbitrarily shaped three-dimensional 
objects, the method of moments (MOM) is widely 
used in computational electromagnetics (CEM). 
However, traditional MOM technique is inherently 
limited because its direct solution has 3( )O N  
complexity for a problem with N  unknowns, and 
even though the iterative methods are adopted, the 
matrix-vector multiplication (MVM) can be 

2( )O N . Over the past few decades, a number of 
techniques have been proposed to speed up the 
process of MVM. The fast multipole method 
(FMM) [1-3] and the multilevel fast multiple 

algorithm (MLFMA) [4] are well known among 
them, which can reduce 2( )O N  for MVM to 

1.5( )O N  and ( log )O N N , respectively, and some 
techniques are proposed to further improve the 
efficiency. In [5] the Cartesian components of the 
radiation patterns are represented in a spherical 
harmonics basis to optimize the memory 
requirements. Another interesting method is the 
wavelet matrix method [6-10], which can sparsify 
the dense moment matrix due to its multiresolution 
and vanishing moment properties, leading to a 
reduced solution time for the resulting sparse 
matrix. The applications of wavelet matrix 
transform have been widely used but are mainly 
confined to the analysis of two-dimensional (2-D) 
problems, or to special structures such as wire in 
which the current direction is one-dimensional. 
When 3-D scattering problems are considered, the 
impedance elements distribution will be more 
oscillatory than that in 2-D or 1-D cases, and the 
sparsity obtained by ordinary wavelet can be 
unsatisfying, which makes the application of 
wavelet transform to such problems greatly 
restricted. 
 

II. THEORY 
For perfectly electrically conducting (PEC) 

objects illuminated by an incident field ( )iE r , the 
electric field integral equation (EFIE) is given by  
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where ( )′J r  is the unknown current distribution, n̂  
is the unit outwardly directed norm vector of 
surface S , ( , )′G r r  is the well-known free-space 
dyadic Green's function given by  
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with I  being the unit dyad. 
When ( )J r  is represented by the Rao-Wilton-

Glisson (RWG) basis functions and FMM is 
applied, equation (1) will be reduced to a matrix 
equation. For the far groups, the matrix-vector 
multiplication can be rewritten as    

far =Z x DTAx  ,                          (3) 
where x  is the unknown current coefficients, and 
D , A , T  are the disaggregation matrix, 
aggregation matrix, and translation matrix 
respectively, which are defined as   
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in which ( )S
mf r and ( )S

n ′f r are the RWG functions, 
k  is the wavenumber in free space, or  and o′r  are 
field group center and source group center 
respectively, ˆ

p pk=k k , ˆ (sin cos ,p p pθ φ=k  
sin sin ,cos )p p pθ φ θ , ( , )p pθ φ  are the sampled points 
over the unit sphere, X  is the center distance 
between field group and source group, (2)

lh (x) is a 
spherical Hankel function of the second kind, and 

( )lP x  refers to a Legendre polynomial. 
The translation matrix T  is highly sparse and 

can be further sparsified through the use of a 
windowed translation operator [12]. In this paper, 
discussions are focused on the sparsify operations 
of D  and A . As we know that for the interaction 
between two far groups, D  is an iM K×  matrix 
and A  is a iK N×  matrix with 22K L= .  

As can be seen from (4) and (5), for a given 

( )S
mf r or ( )S

n ′f r , the elements in the corresponding 
row or column vary with the sampled points on the 
surface of an unit sphere according to the Gauss-
Legendre method. Compared with the elements 
distribution in traditional impedance matrix for 3-
D problem, the elements distribution in D (row) or 
A (column) is relatively regular. That is the reason 
that the wavelet transform is introduced for the 
row in D  and the column in A . 

The wavelet matrix transformation is applied 
and the interaction between the two groups can be 
represented by 
[ ] [ ] [ ]

i jM K K K K N× × ×
D T A x  

[ ] [ ] [ ] [ ] [ ]
i jM K K K K K K K K NK K K K× × × × ×× ×

⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦D W W T W W A x� � , 

 (7) 
where W�  and W  are forward and inverse wavelet 
transform matrices respectively and have the 
identity =WW I� , and for orthogonal wavelet 

T=W W� . 
Equation (7) can be rewritten as 

=DTAx DWTWAx�� �  ,           (8) 
with =D DW�  and =A WA� � . 
Then the MVM will be completed by the 
following steps: 
- Firstly, D , A  and T are generated and wavelet 
matrix transform is applied simultaneity by 

=D DW�  and =A WA� � , then D� and A�  is a sparse 
matrix by the threshold mσ .  
- Secondly, complete aggregation by 1 =x Ax� , and 
the inverse wavelet transform for 1x  is implement 
by 2 1=x Wx . 
- Thirdly, complete translation by 3 2=x Tx . 
- Finally, the forward wavelet transform for 3x  is 
applied by 4 3=x Wx� , and the disaggregation is 
completed by 5 4=x Dx� . 

To save CPU time and memory consumed for 
transform matrix, the lifting wavelet like transform 
is introduced to complete the forward transform 
and inverse transform. In the LWLT scheme, the 
wavelet transform is directly operated to the object 
matrix according to the polyphase matrices 
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in which  ( )is z  and ( )it z  are Laurent polynomials, 
and F  is a nonzero constant. 

 The forward transform is implemented 
according to 1( )tz−P�  and the inverse transform is 
operated by ( )zP , and specific examples can be 
found in [11]. 

For a field group with iM  RWG functions and a 
source group with jN  RWG functions, there are 

22L  elements in each row of D  or in each column 
of A , and in the presented scheme, the LWLT is 
actually applied to D  row by row, and applied to 
A  column by column. Take the matrix D  for 
example, once a certain row is generated and the 
transform for it is implemented, then the clipping 
operation [13] is used with the threshold and only 
the left elements in the row are stored. The 
threshold for the m  row is defined by 

( )
1

2 2 2

1

1 ( , ) ( , )
K

m
p

m p m p
K θ ϕσ τ

=

= ⋅ +∑ D D� � ,     (11) 

and numerical simulations show that [0.8,1.2]τ ∈ , 
and the accuracy is controlled by τ . 

As we can see from the above operations, two 
wavelet implementations are added to each 
iterative step. The number of multiplication 
operations within the LWLT is set to be p  which 
can be counted from the polyphase matrices. If the 
length of the signal is K , the total computational 
complexity for implementation LWLT for it can 
be computed by 

               1 1(1 ...)
2 2 4
Kp pK× × + + + = ,            (12) 

and for Daubechies wavelets of 4  vanishing 
moments (db4) with the maximum level transform 

12p = , which is so smaller than iM  that can be 
neglected when electrically large problem is 
considered, since iM N≈ . 
 

III. NUMERICAL RESULTS 
Firstly the disaggregation matrix D  for a PEC 

cube is considered with 10L = . After the lifting 
wavelet like transform by db4, a row of D�  is 
presented in Figure 1.  
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Fig. 1. The elements distribution in disaggregation 
matrix after the application of  LWLT. 
 
     As can be seen from Fig. 1, most of the 
elements are far smaller than the others. The 
results after the clipping operation is shown in Fig. 
2 and only about 30% of the total elements are 
left, then the inverse LWLT is implemented and 
the new row after transform is given in Fig. 3 
which agrees well with the original row transform 
in D , the relative error is 2.57%, which will 
ensure the accuracy of MVM computation for far 
field.  
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Fig. 2. The elements distribution in disaggregation 
matrix after the application of clipping technique. 
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Fig. 3. The elements distribution in disaggregation 
matrix obtained by inverse lifting wavelet transform 
from the row presented in Fig. 2, which is compared 
with the row in D . 
 

As the first example, a PEC sphere with a 
diameter of 5λ  is considered. The total number of 
unknowns is 15870 and the unknowns are divided 
into 98 groups with group size 1d λ= . When the 
sparsity (defined as the percentage content of 
nonzero elements) of disaggregation matrix and 
aggregation matrix is 32.44% ( 0.9τ = ), the radar 
cross section (RCS) of the sphere computed by the 
LWLT-FMM scheme is compared with that of the 
analytical solution and shown in Fig. 4. 
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Fig. 4. The E-plane RCS of a PEC sphere with a 
diameter of 5λ . 
 

A PEC cube with a side length of 4λ  is 
considered as the second example. The surface of 
it is discretized into 12288 triangular elements, 
and 98 nonempty boxes are formed with group 

size 0.8d λ= . The sparsity of disaggregation 
matrix and aggregation matrix obtained is 33.13% 
( 1.1τ = ), the LWLT-FMM method obtained the 
accurate result more quickly as compared with the 
traditional FMM, which is shown in Fig. 5. 
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Fig. 5. The E-plane RCS of a PEC cube with a side 
length of 4λ . 

 
The total CPU time and memory consumed for 

the MVM in far-field computation is shown in 
Table I. We can conclude that the proposed 
method can speed up the FMM by a factor of two 
with half memory consumed. 

 
Table I  The CPU time and memory required for the 
MVM operations of far-field interactions 

Example 

CPU time for far field 
computation 

Memory required for 
Far-field computation 

FMM    LWLT-FMM FMM    LWLT-FMM 

PEC 
Sphere 

12L =  

192 
seconds 

107 
seconds 213MB 96MB 

PEC 
Cube 

10L =  

177 
seconds 

98 
 seconds 170MB 74MB 

 
IV. DISCUSSION 

To validate the effectiveness of the formula 
presented in equation (11) for the threshold, we 
define the relative root mean square (RMS) error 
as  

[ ]
1
22

10
1

1 ˆ10 log ( ) / ( )
M

RMS m m
m

Err
M

σ θ σ θ
=

⎧ ⎫
= ⎨ ⎬
⎩ ⎭

∑  ,     (13) 
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where the mθ  represent M  selected scattering 
directions. σ̂  and σ  are the radar cross section 
obtained by direct FMM solution and LWLT-
FMM method, respectively.  

For the given two examples mentioned above, 
the relationship between relative RMS RCS error 
and the value of parameter τ  are shown in Fig.6 
and Fig. 7, while the sparsity of disaggregation 
matrix and aggregation matrix is given in Fig.8, 
from which we can conclude that the relative RMS 
RCS error can be controlled under 0.5 dB with the 
sparsity about 30% when the value of parameter τ  
is chosen from 0.8 to 1.2.  

Finally, when we set 0.9τ =  and 1.1τ =  for the 
PEC sphere and PEC cube described in the 
previous section, the nonzero element distribution 
in disaggregation matrix for the first nonempty 
box are shown in Fig. 9 and Fig. 10, respectively. 
 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Value of τ

R
e

la
tiv

e
 R

M
S

 R
C

S
 e

rr
o

r 
(d

B
)

E−Plane RMS error

H−Plane RMS error

 
Fig. 6. Relative RMS RCS error of PEC sphere varies 
with value of τ. 
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Fig. 7. Relative RMS RCS error of PEC cube varies 
with value of τ. 
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Fig. 8. Sparsity of disaggregation matrix and 
aggregation matrix varies with value of τ. 
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Fig. 9. Nonzero elements distribution for disaggregation 
matrix of a PEC sphere. 
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Fig. 10. Nonzero elements distribution for 
disaggregation matrix of a PEC cube. 
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V. CONCLUSION 
The fast multipole method in conjugation with 

the LWLT scheme is proposed to the scattering 
analysis of different shaped three-dimensional 
PEC objects, the CPU time and memory consumed 
by FMM are reduced by sparsify the 
disaggregation matrix and aggregation matrix in 
time.  
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