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Abstract − In this paper a novel space-stepping 
finite-difference frequency-domain (SSFDFD) method is 
presented for the analysis of passive microwave devices. 
Unknown electromagnetic (EM) fields are solved from 
given EM fields at two initial planes space-step by 
space-step along a spatial direction. SSFDFD has the 
advantage over the traditional FDFD method in that all 
the EM field unknowns are local variables and the 
solution of a huge matrix equation is avoided. The 
stability condition for the SSFDFD method is derived as 
that for the finite-difference time-domain (FDTD) 
method. Application examples show that the stability 
condition is valid and the SSFDFD method is at least one 
magnitude faster than the traditional FDFD method with 
the same accuracy of analysis. SSFDFD has the potential 
to be a powerful and fast tool for full wave EM field 
modeling of passive microwave devices.  
  

I.  INTRODUCTION 
 

Electromagnetic field analysis is very important in 
many scientific and technologic issues, among which full 
wave analysis has attracted much attention for high 
analysis accuracy at high frequencies. The finite 
-difference time-domain (FDTD) method has been one 
of the most widely used numerical full wave analysis 
methods. However, such time-domain simulations 
always consume huge computer time and memory space 
which is a big problem. The finite-difference 
frequency-domain (FDFD) method has been recognized 
as one of the most powerful numerical algorithms for 
full-wave solution of EM field problems because of its 
ability to take the frequency-dependent properties of 
material parameters into account [1, 2] and because 
FDFD simulates characteristics in the frequency domain 
directly. In FDFD the time variation of EM fields has the 
form of ejωt or est, thus the partial differential operator ∂/
∂t in Maxwell’s equations can be substituted with jω or s. 
The remained spatial differential or integral Maxwell’s 
equations are then approximated by central differences. 

The space grid mesh in FDFD is similar with the 
standard Yee’s mesh of FDTD [3]. However, in all 
existing FDFD methods, the obtained difference 
equation is a very large matrix equation, the dimension 
of which is equal to the number Nv of the unknown EM 
field variables at all grid nodes. Although the coefficient 
matrix is a band diagonal matrix with bandwidth of 25, 
the number of multiplications needed to solve the 
equation by traditional Gauss elimination is still as large 
as Nv 

β   (1.0<β<1.5). In order to improve the efficiency 
of FDFD, some novel numerical methods usually used in 
circuit simulation, such as the CFH [4] and Pade 
approximation via Lanczos (PVL) [5, 6], have been 
implemented to accelerate the procedure for obtaining a 
response spectrum. 

In Yee’s FDTD, the EM fields can be solved from 
the initial condition (usually the electric fields at time 
t=0 and magnetic fields at time t=0.5Δt) time-step by 
time-step, and the EM fields at all grid nodes are local 
variables which are related only to the EM fields at the 
four surrounding nodes. Following this idea, a novel 
space-stepping finite-difference frequency-domain 
(SSFDFD) method is developed to analyze passive 
microwave devices. In SSFDFD, Maxwell’s equations in 
the frequency-domain are first approximated with center 
difference, and a spatial coordinate axis, for example, the 
z-axis, is selected as the space stepping direction. Then 
the unknown EM fields are solved space-step by 
space-step along this space stepping direction from the 
given EM fields on two initial cross sectional planes 
perpendicular with the stepping direction. For passive 
microwave devices consist of waveguide structures, the 
longitude direction can be defined as the space stepping 
axis, and two transverse planes in the uniform guided 
wave structures can be chosen as the initial planes. All 
the EM fields to be solved at each node are local 
variables, which are related only to the EM fields at their 
neighboring nodes. Thus, the solution of a huge matrix 
equation as that in traditional FDFD is avoided. In 
SSFDFD, the number of multiplications for solution of 
all the unknown EM field variables is reduced to 2Nv, 
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and much computer memory can be saved because at 
each space step only the EM fields on the planes under 
analysis need to be saved. Application examples show 
that SSFDFD is at least one magnitude faster than the 
traditional FDFD and the finite element method (FEM). 
Therefore, the SSFDFD method could be useful to solve 
complex microwave circuits. 

In FDTD the space steps (Δx, Δy, and Δz) and time 
step (Δt) must satisfy a stability condition to guarantee 
the algorithm stability [3, 7]. In this paper, it is pointed 
out that, as with FDTD, there is a stability problem with 
SSFDFD. The space step size and the angular frequency 
must satisfy a condition to guarantee the stability of 
SSFDFD. If SSFDFD steps in the z-axis direction, then 
the stability condition for SSFDFD is, 

min
max 2 2

21 1
2

( ) ( )
c

c
x y z

ω+ ≤ ≤
Δ Δ Δ

 

where cmax and cmin are the maximum and minimum 
possible velocity of the EM waves in the media, 
respectively. For a given angular frequency ω, relatively 
smaller space step (Δz) in the stepping direction of the 
algorithm and larger space steps (Δx and Δy) in the cross 
sectional plane are required for the stability of SSFDFD. 
Also, for a given reasonable set of space steps, there is a 
frequency band in which SSFDFD is stable.  

The validity, efficiency, and stability conditions of 
the proposed SSFDFD are tested and verified by 
simulating the EM field response of the TE10 mode in a 
rectangular waveguide containing a dielectric segment. 
Two cases where the permittivity of the dielectric 
segment is first constant and then frequency -dependent 
are considered. 

  
II.  SSFDFD ALGORITHM 

 
In order to clearly illustrate the SSFDFD algorithm, 

the components of Maxwell’s equations in the 
frequency-domain are written in a modified order as  
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where ε(ω), μ(ω), and σ(ω) are the medium permittivity, 
permeability and conductivity, respectively, which can be 
frequency-dependent. Using the grid mesh in Fig. 1, 
equations (1) to (6) can be approximated by central 
difference as, 
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in which Δx, Δy , and Δz are grid sizes in the x, y, and z 
directions of the Cartesian coordinates, respectively. 
Next a spatial coordinate axis, for example, the z-axis, is 

260 ACES JOURNAL, VOL. 24, NO. 3, JUNE 2009



selected as the stepping direction of the algorithm to be 
developed for SSFDFD. For a given value of index k, 
suppose the EM fields ϕ(i,j,k) for all i and j have already 
been obtained, then the fields ϕ (i,j,k+1) for all i and j 
can be computed by the following procedure: 
 
1. Compute Ex(i,j,k+1) and Ey(i,j,k+1) from equations 

(7) and (8). 
2. Compute Hz(i,j,k+1) from equation (12). 
3. Compute Hx(i,j,k+1) and Hy(i,j,k+1) from equations 

(10) and (11). 
4. Compute Ez(i,j,k+1) from equation (9). 

 
So, if we set the EM fields ϕ(i,j,0) at k=0 (actually, 

Ex, Ey and Hz at plane z=0 and Hx, Hy and Ez at plane 
z=0.5Δz in Fig. 1) as the given “initial” condition, then 
all the EM fields at k > 0 can be obtained space-step by 
space-step along the z-direction. The characteristic 
electrical parameters (such as the S-parameters) for the 
structure under analysis can be extracted from the 
obtained EM fields using the approach given in [2]. 

 

 
Fig. 1. The grid mesh for SSFDFD. 
 

From the above SSFDFD algorithm, we can see that 
the unknown EM fields to be solved at each grid node 
are all local variables, which are only related to the EM 
fields at their four neighboring nodes. The solution of a 
huge matrix equation as required in the traditional FDFD 
method is avoided. The total number of multiplication 
operations of complex numbers to solve for all the Nv 
unknown EM field components with SSFDFD is 2Nv, 
compared with the number Nv

β  (1.0<β<1.5) in traditional 
FDFD. Furthermore, significant computer memory can 
be saved with SSFDFD, because at each space step only 
the EM fields on the planes under analysis need to be 
saved. 

The SSFDFD method can be used not only for 
waveguide structures, but also for open problems of EM 
field analysis. In an open space problem, absorbing 

boundary conditions (ABCs) can be used at the artificial 
computation boundaries in a similar way as in FDTD. 
But unlike in FDTD, the absorbing boundary condition is 
not necessary in SSFDFD for the two artificial 
computation boundaries perpendicular with the z-axis. 

    
III.  SSFDFD STABILITY CONDITION 

 
It is found that, as with FDTD, there is the stability 

problem with SSFDFD. The space step size and the 
angular frequency must satisfy a condition to guarantee 
the stability of SSFDFD. The derivation of the stability 
condition for SSFDFD is similar to that for the FDTD 
stability condition [7]. For convenience, a normalized 
region of space with μ=1, ε=1, and σ=0 is considered. 
Maxwell's equations can be written in the normalized 
space as, 

vj v
t

∂
∇ × =

∂
               (13) 

 
in which EjHv += . The frequency-domain form of 
equation (13) is, 
 
                 V Vω∇× =                (14) 

 
where V is the Fourier transform of v . Suppose the 
SSFDFD algorithm steps in the z-axis direction, 
equation (14) is then rewritten as, 
 

        ( )x y y x
t

V a V a
V V

z
ω

∂ −
∇ × − = −

∂
       (15) 

 
in which xa and ya are unit vectors in the x and y 

directions, respectively, and t∇  is the lateral part of 

the operator ∇ . The stability of a particular numerical 
representation of equation (15) can be examined simply 
by considering the following pair of eigenvalue 
problems, 
 

     
( ) ( )xyyx

xyyx aVaV
z

aVaV
−=

∂
−∂

− λ      (16) 

 

( )t x y y xV V V a V aω λ∇ × − = − .      (17) 

 
SSFDFD employs central difference to approximate 

the derivative in Maxwell's equations. Using central 
difference for the derivative with respect to the z 
coordinate and letting )( znzVVn Δ== , equation (16) 
yields, 
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Defining a growth factor, 

( ) 1
2
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and substituting it into equation (18), we get, 
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Algorithm stability requires 1q ≤  for all possible 

spatial modes in the lattice. For this to occur, 
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We now let, 
 

        
)(

0),( ymkxlkj yxeVmlV Δ+Δ−=      (21) 
 

represent an arbitrary spatial mode. Using the central 
difference for the derivative with respect to x and y, we 
have, 

z
x

z
y

y
z

x
z

t a
y

V
a

x
V

a
x

Va
y

VV
∂

∂
−

∂

∂
+

∂
∂

−
∂

∂
=×∇  

y z x x z y x y z y x zjs V a js V a js V a js V a= − + − + (22) 
where 

2sin ,  2sin
2 2

yx
x y

k yk xs x s y
Δ⎛ ⎞Δ⎛ ⎞= Δ = Δ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
. (23) 

 
Substituting equation (22) into equation (17) yields, 
 

yxzy VjVjVs λω =+−          (24) 
 

xyzx VjVjVs λω −=+ ,         (25) 
 

0x y y x zs V s V j Vω− + + = .         (26) 
 

Solving equations (24) to (26), we get, 
 

2 2 2 2
x ys sλ ω= + − .       (27) 

 
Substituting equation (27) into equation (20) yields the 
stability condition for SSFDFD, 

 
2

2 2 2 2 22
x y x ys s s s

z
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Δ
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For any spatial modes in real media, equation (28) can be 
rewritten as, 

 

2 2

1 1 22
( ) ( )

cc
x y z
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Δ Δ Δ
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where 1c με=  is the EM wave velocity in the real 
media. Considering that c is unknown and is not the 
same in different media region, equation (29) is modified 
as, 
 

min
max 2 2

21 12
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cc
x y z

ω+ ≤ ≤
Δ Δ Δ

      (30) 

 
where cmax and cmin are the maximum and minimum 
velocity of EM waves in the media, respectively. 

From the stability condition shown in equation (30) 
we can see that for a given angular frequency ω, a 
relatively smaller space step (Δz) in the stepping 
direction of the algorithm and larger space steps (Δx and 
Δy) in the cross sectional plane are required for the 
stability of SSFDFD, and that Δz must be smaller than 
Δx and Δy. The role of Δz in the stability condition of 
SSFDFD is similar with that of the time step Δt in the 
stability condition of FDTD. This is because a simulation 
with SSFDFD is supposed to iterate in the z-axis 
direction, while a simulation with FDTD iterates with 
increasing time t. From equation (30) we can also 
conclude that for a given reasonable set of space steps 
(Δx, Δy and Δz, Δz<Δx and Δy), there is a frequency band 
in which SSFDFD is stable.  

The stability condition in equation (30) is more 
difficult to satisfy for smaller ω. This is because the 
smaller ω  is, the larger Δx and Δy are required to be to 
satisfy the stability condition, while in practical EM field 
simulations, Δx and Δy should not be too large in the 
interest of analysis accuracy. 

 
IV.  DISCUSSION OF SSFDFD 

 
There are several points to be noted for the practical 

use of SSFDFD. The first is that, in equations (7) to (12) 
describing the proposed SSFDFD method, E(i,j,k+1) and 
H(i,j,k+1) are formally independent of E(i,j,k+2) and 
H(i,j,k+2) at the neighboring nodes. This is because 
SSFDFD simulates the frequency-domain steady-state 
EM field responses from the given EM fields at planes 
z=0 and z=0.5∆z, not the temporal propagation procedure 
of EM waves as FDTD does, although the stepping 
algorithm is employed in SSFDFD as in FDTD. It can be 
supposed that some harmonic incident EM waves 
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propagate in the –z direction, react with (and may be 
multiply reflected between) the objects, and transmit 
through the two planes at z=0 and z=0.5∆z. When 
steady-state is reached after a long enough time and 
assuming that the steady-state EM fields at planes z=0 
and z=0.5∆z are given (as in SSFDFD), then SSFDFD 
can be used to derive the EM field distribution of the 
steady-state response at z>0.5∆z. For given EM fields Ex, 
Ey and Hz at the z=0 plane and Hx, Hy and Ez at the 
z=0.5Δz plane, different incident EM waves are required 
for different objects. In the time domain and before 
steady-state is reached, E(i,j,k+1) and H(i,j,k+1) of 
course depend on E(i,j,k+2) and H(i,j,k+2) if there is an 
EM wave (either a reflected wave or a source wave) 
transmitting from z=(k+2)∆z to z=(k+1)∆z. But at 
steady-state, the EM fields at the plane z=k∆z contain the 
information of that at the plane z=( k+2) ∆z, so the EM 
fields at the plane z=( k+1) ∆z can indeed be derived 
from those at the plane z=k∆z according to the 
frequency-domain Maxwell’s equations using a 
difference method as in SSFDFD. The steady-state EM 
fields at the plane z=(k+1) ∆z can also be derived from 
those at the plane z=(k+2)∆z in a similar way. Actually, 
equations (7) to (12) are strictly derived from Maxwell’s 
equations with no other approximations than the second 
order difference. The time-domain response can be 
obtained only by inverse Fourier transformation of the 
frequency -domain responses.  

The second point is that, as the “initial” condition, 
the fields Ex, Ey and Hz at the plane z=0 and Hx, Hy and Ez 
at the plane z=0.5Δz cannot be arbitrarily given. These 
must be the sum of EM fields of actual propagation 
modes at the analysis frequency. In practical use, the 
position of z=0 and z=0.5Δz can be put within a uniform 
waveguide or at two parallel planes in free space for an 
open space problem, so that the mode fields at z=0 and 
z=0.5Δz are known or are able to be solved with a 
2-dimensional (2-D) method such as the 2-D FDFD [8]. 
The physical insight of SSFDFD is to derive the EM 
field distribution of the steady-state response and the 
incident EM fields from the given EM fields at planes 
z=0 and z=0.5Δz. This is to say the “initial” planes 
(planes at z=0 and z=0.5Δz) in SSFDFD can be 
understood as the output port of the structure under 
analysis, where there are only EM waves propagating in 
the –z direction. As a result, the EM fields Ex, Ey and Hz 
at the plane z=0 and Hx, Hy and Ez at the plane z=0.5Δz 
can be composed of any linear combination of the 
existing mode fields propagating in the –z direction. In 
this way, the problem of the unknown ratio of the 
incident waves and reflected waves at the incident planes 
is avoided.  

For a given incident wave, there may be evanescent 
waves and non-propagating waves at planes z=0 and 
z=0.5Δz resulting from the structure interaction. In 

SSFDFD, however, only existing propagation modes 
(eigen modes) in uniform waveguides or in free space 
are considered for giving the values of the EM fields Ex, 
Ey and Hz at the plane z=0 and Hx, Hy and Ez at the plane 
z=0.5Δz. This is reasonable for two reasons. One reason 
is that only the steady-state response of the EM fields is 
simulated by SSFDFD and the evanescent waves and 
non-propagating waves can be neglected. Another reason 
is that we can assume that the incident waves are so 
composed that the transmitted waves are exactly the 
given waves at the output port.      

The third point concerns the case where there is a 
perfect conductor with the objects. The incident fields 
should be perturbed behind this conductor. However, it 
seems that calculating the EM wave going through the 
conductor from the output (i.e., from z=0 and z=0.5Δz) to 
the input with SSFDFD will not show any perturbation 
of the fields unless the structure is reached. But actually, 
considering that the task of SSFDFD is to derive the 
steady-state field distribution from the given response 
fields at the output planes (not from the incident fields), 
the perturbation effects of the conductor to the EM fields 
will be taken into account in the simulation results of the 
field distribution of the incident EM waves. The situation 
for a cavity structure is similar. Another confusion with a 
perfect conductor is that, if the grid mesh in Fig. 1 is 
used for the conductor, then the electric fields at the 
surface ABCD are tangential fields and should have a 
value of zero, while the simulated value from SSFDFD 
may not be zero. This confusion can be alleviated 
through moving the mesh surface ABCD by 0.5Δz along 
the z-direction, such that the electric fields on the surface 
are perpendicular and can be computed with SSFDFD. 
On the other five surfaces of the mesh of a perfect 
conductor, the EM fields are still tangential and the 
treatment of the electric boundary condition is similar to 
that in FDTD.  

The last point concerns the stability condition. 
Suppose yx Δ=Δ , from equation (30) Δx and Δy must be 
larger than max2λ π for the stability of SSFDFD, where 

maxλ is the maximum wavelength in the media. With such 
space steps, accuracy problems will be caused in an 
analysis of a steep distribution of EM fields and for 
small details of objects. Fortunately, although small Δx 
and Δy may make SSFDFD unstable, the phenomena of 
instability will occur only after a number of iterations of 
SSFDFD, and the analysis results along the z-direction 
before instability occurs can still be used. Our 
application practice indicates that the analysis results 
before instability occurs are always sufficient to reach an 
analysis target.  

From the above discussion, although there are still 
some difficulties (especially the stability problem) with 
SSFDFD, it has great potential as a powerful and fast 
tool for full wave modeling of passive microwave 
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circuits, considering that it is a breakthrough in terms of 
analysis efficiency and computer memory. 

 
V.  APPLICATION EXAMPLES 

 
To verify the proposed SSFDFD method, the 

steady-state EM field response of the TE10 mode in a 
rectangular waveguide containing a segment of dielectric 
(shown in Fig. 2) is simulated. We set the relative 
permittivity of the dielectric to be a constant, that is, 
εr=4.0 as the initial condition. The EM fields Ex, Ey and 
Hz at plane z=0 and Hx, Hy and Ez at plane z=0.5Δz are 
given with the value of the mode fields of TE10 wave 
propagating in the z-direction, and the steady-state 
response for incident waves from the other side of the 
dielectric segment is simulated. After the simulation with 
SSFDFD, the total fields including both the incident and 
the reflected waves are obtained within the dielectric 
segment and at the incident side of the dielectric 
segment.  

 
Fig. 2. Geometry of a dielectric loaded rectangular 
waveguide, where a=2cm, b=1cm, and the thickness of 
the dielectric segment is t=1.2 cm. 

 
First the stability condition in equation (30) is 

tested. Because for the TE10 mode the EM fields are 
uniform in the narrow edge (y-axis) direction of the 
rectangular waveguide, the stability condition in 
equation (30) of SSFDFD becomes, 

  

z
c

x
c

Δ
≤≤

Δ
minmax 22

ω          (31) 

 
we set 0max cc = and min 0 rc c ε= , where c0 is the 
light velocity in vacuum. Suppose the analysis frequency 
is 40 GHz, the exact stability condition for the TE10 wave 
is Δx≥0.2387 cm, Δz≤0.1194 cm. Practical simulations 
show that SSFDFD is stable when Δx=0.25 cm and 
Δz=0.11 cm, but is unstable when Δx=0.25 cm and 
Δz=0.12 cm, or when Δx=0.2 cm and  Δz=0.11 cm. The 
distribution of the real part of the simulated complex 
electric field Ey along the longitudinal direction (z-axis 
direction) at x=0.5 cm with Δx=0.25 cm and Δz=0.11 cm 
is given in Fig. 3. Although the result is not accurate 
(compared with the result from Δx=0.25 cm and Δz=0.01 

cm, which is also shown in Fig. 3) because of the large 
value of Δz, it is stable. The numerical results for the two 
unstable cases are shown in Fig. 4.  

 
 

Fig. 3.  Distribution of the real part of Ey along the z- 
axis in the dielectric loaded rectangular waveguide. 
 

 
Fig. 4.  Distribution of the real part of Ey along the z- axis  
in the two unstable cases. 
 

Next the validity and efficiency of the proposed 
SSFDFD is tested. Let Δx=0.4 cm and Δz=0.05 cm in the 
simulation, then the frequency band where SSFDFD is 
stable is between 23.87 GHz and 95.49 GHz. If a 
frequency outside of the stable frequency band is 
simulated, the result will diverge with the stepping 
procedure. Figure 5 shows the unstable result at  
10 GHz. From Fig. 5 we can see that, although the 
computation diverges, a slice of the result along the 
z-direction is correct and useful. The length of slice with 
correct results depends on the dielectric. If the length of 
the structure under analysis is shorter than the length in 
the z-direction where SSFDFD doesn’t diverge, SSFDFD 
can still be used for the frequencies outside of the stable 
band. In Fig. 5 SSFDFD doesn’t diverge until z=7 cm, 
then if the distance between the input port and output 
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port is less than 7 cm, correct S-parameter results are still 
available. Actually we set the ports separation to 6 cm, 
between which the dielectric segment is included. The 
obtained S-parameters are plotted in Fig. 6 for 
comparison the results from traditional FDFD and FEM 
are given as well, showing that excellent agreement is 
achieved. The computation times for the different 
methods are listed in Table 1. 

  
 
Fig. 5.  Distribution of the real part of Ex along the 
z-axis at f=10.0 GHz. 
 

 
 

Fig. 6.  Magnitude of the S-parameters from three 
different methods. 
 
Table 1. Efficiency comparison among different 
approaches: SSFDFD, traditional FDFD, FEM with 
discrete frequency sweep and FEM Adaptive 
Lanzcos-Pada Sweep (ALPS). The CPU time is that for 
getting the curves in Fig. 6. 
 

 SSFDFD FDFD FEM 
(discrete) 

FEM 
(ALPS) 

Mesh 
grids 

3000 
cubes 

3000 
cubes 

3051 
tetrahedra 

3051 
tetrahedra 

CPU 
time 3 sec. 3 min. 

20 sec. 
4 min. 
18 sec. 

1 min. 
19 sec. 

These results are obtained with an Intel Pentium-IV 
1.6 GHz computer, and using MATLAB software and 

ANSOFT HFSS software, respectively. From Table 1, 
we can see that the SSFDFD method is at least one order 
of magnitude faster than traditional FDFD, FEM and 
FEM’s Adaptive Lanzcos-Pada Sweep (ALPS) which is 
a fast sweep approach. An algorithm for solving sparse 
matrix equations was used in the traditional FDFD. If 
compared with the FDTD method, suppose 1000 time 
steps are needed for FDTD to converge to a result and 
100 sample frequencies are needed for SSFDFD to get a 
response spectrum, then, theoretically, SSFDFD should 
be 10 times faster than FDTD. Figure 7 gives the 
simulated S-parameters with SSFDFD for a wider range 
of frequencies.  

As a second case of the above example, the 
dielectric segment is next supposed to be Lorentz 
material [9] with a frequency-dependent complex 
permittivity defined by, 

 

0
2
0

2 2
0

( ) ( ( )) ( )

( )( )
2

s

D E

j

ω ε ε χ ω ω

ε ε ωχ ω
ω ωδ ω

∞

∞

= +

−
=

+ −

       (32) 

 

where ( )E ω  is the electric field vector, ( )D ω  is the 
electric flux density vector, χ(ω) is the electric 
susceptibility function, ε0 is the permittivity in vacuum, 
ε∞ is the limiting permittivity at infinite frequency, εs is 
the permittivity at zero frequency, ω0 is the resonant 
frequency, and δ  is the damping coefficient. For the 
Lorentz material in this example, 4.3ε∞ = , 6.0sε = , 

9
0 50 10ω π= × , 00.001δ ω= , and 0σ = . We calculate the 

S-parameters for a frequency range from 10 GHz to 16 
GHz by SSFDFD and compare the results in Fig. 8 with 
those from the FEM method. The results agree well as 
shown in Fig. 8, indicating that SSFDFD is able to 
simulate a frequency-dependent dielectric as well. The 
simulation efficiency is the same as that of the first case 
with constant dielectric permittivity. 

 
Fig. 7.  Magnitude of the S-parameters from SSFDFD 
for a wider range of frequency. 
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Fig. 8.  Magnitude of the S-parameters from SSFDFD 
and FEM for the case of frequency-dependent complex 
dielectric permittivity. 
 

VI.  CONCLUSION 
 

A novel SSFDFD method is presented in this paper 
for full wave EM field modeling of passive microwave 
devices. In SSFDFD all EM fields are local variables, 
which can be solved from the given EM fields at the 
initial planes space-step by space-step along a coordinate 
direction. The solution of a huge matrix equation as in 
the traditional FDFD is avoided, making the proposed 
SSFDFD at least one magnitude faster than the 
traditional FDFD, FEM and FDTD methods under the 
precondition of keeping similar simulation accuracy. 
Also, significant computer memory can be saved. The 
stability condition for SSFDFD is derived and analyzed. 
SSFDFD has great potential as a powerful and fast tool 
for full wave EM field analysis of guided wave 
structures, although much work is still required to make 
it practically applicable to some complex problems of 
microwave circuits. 
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