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Abstract – This paper presents a set of fast algorithms 
developed for solving the visibility problem in large 
complex geometric scenarios. The implemented 
algorithms are: Binary Space Partitioning (BSP) –based 
on a binary tree structure- and three new ones: Trimming 
Method – facets which are partially occluded are trimmed 
–, Cone Method – a cone emerges from the point of view 
to discard shadowed facets – and Pyramid Method – a 
pyramid is used to eliminate non-lit patches – . All the 
proposed algorithms are tested on a pair of scenarios for 
determining the field of view of electromagnetic waves in 
order to calculate the corresponding induced currents on 
the surfaces. The scenarios consist of two electrically 
large spheres and two PEC plates respectively where the 
surfaces are meshed with a variable number of flat 
triangular patches. The first reflection contribution is 
calculated using Physical Optics (PO) for both cases. The 
results show that the computational time can be 
drastically reduced by assuming small percentage of error 
in the computed scattered fields.  
 

I. INTRODUCTION 
   

Fast interrogation techniques for distinguishing 
between shadowed and lit regions, relative to a source 
point, are important in many computational-engineering 
areas including: image processing, virtual reality, video 
games and electromagnetic problems. Radar applications 
and radio-electric coverage are examples of 
electromagnetic problems where this distinction is 
necessary. In this way, the existence of line of sight 
between observation and source points can be one of the 
most consuming activities to afford at complex scenarios.   

Traditional software methods, such as Painter’s or Z-
buffer algorithms [1-3], were applied successfully for 
solving the visibility problem. These methods have been 
combined with some pre-processing techniques to 
accelerate the basic algorithms. One of those techniques 
consists of grouping many planar facets into 
parallelepipedic or conical macro-domains. This 
information is then used to perform a first interrogation at 
the macro-domain level and discard some of them based 
on the source and observation points. Finally, a refined 

interrogation at the facet level is performed and, as a 
result, a high amount of computational time is saved. 
Space Volumetric Partitioning (SVP) or Angular Z-buffer 
(AZB) algorithms are good examples of this pre-
processing technique [4-7].      

Currently, a wide variety of the visibility problems 
can be solved in a fast way by employing GPU’s [8] 
instead of CPU’s. Good examples of this concept can be 
found in the literature [9, 10]. In [9] a specialized graphic 
card was introduced into a personal computer in order to 
compute real-time RCS. Its main disadvantage is that it 
implies the building of machine dependent software. On 
the other hand, non real-time solutions, but suitable for 
many applications, can also be performed by means of 
low cost generic graphic cards. The interface for 
communicating with the generic graphic card is done by 
using a set of libraries like DirectX or OpenGL [11]. One 
of the flaws in the latter method is that these libraries do 
not allow extracting the required information directly 
without first depicting the geometry. This depicting step 
is of no interest in applications where the main goal of 
the problem is not a graphical representation of the data 
as it implies an increase in the computational cost. This is 
the case of some electromagnetic problems -like radio-
electric coverage or RCS applications- where the required 
information consists in getting mathematical structures 
indicating the facets in the scenario a point source is able 
to see for a set of sweeping angular directions. At this 
point, a return to the traditional geometric algorithms can 
be thought as a suitable solution for the problem.  As a 
response to this requirement, new efficient and faster than 
traditional algorithms are investigated and presented in 
this paper.  

The main features of the proposed techniques in the 
resolution of the visibility problems are: hierarchical 
classification and storage in BSP, accurate determination 
of visible geometry in Trimming, fast discrimination in 
Cone and Pyramid Methods.   

The paper structure is as follows:  the next section 
presents and describes step by step how the four visibility 
algorithms -Binary Space Partitioning, Trimming 
Method, Cone Method and Pyramid Method- work; the 
third section presents the numerical examples where all 
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the algorithms are tested and compared. The paper is 
closed with conclusion that summarizes the performance 
of each algorithm based on accuracy and computational 
cost.   
 

II. ALGORITHMS DESCRIPTION 
 

This section describes, step by step, all visibility 
algorithms. The mathematical notation and symbols are 
summarized in Table 1. The visibility algorithms satisfy 
the following conditions: 
• The geometry is supposed to be modelled with flat 

triangular patches. As a consequence, the algorithms 
are optimized to these particular facets.  

• The normal vector criterion is always taken in 
consideration. If the angle between the position 
vector and the outward normal vector of the patch is 
in the interval [-90º, 90º], the facet must be 
eliminated.   
A feature to underline is that the source point s  is 

located at the origin of the Cartesian coordinate system in 
order to simplify the equations. Any other emplacement 
can be considered by means of a translation 
transformation. 

 
Table 1. Nomenclature for the visibility algorithms. 
 

NOMENCLATURE 
Symbol Description Components 

s Source point ( )0,0,0  

t̂  Unitary target direction ( )321 t,t,t  

in̂  
Unitary normal outward vector 
to facet i  ( )i

3
i
2

i
1 n,n,n  

i
cP  Barycentre of facet i  ( )i

3c
i
2c

i
1c P,P,P  

i
lV  Vertices of facet i  ( 3,2,1l = ) ( )i

3l
i
2l

i
1l V,V,V  

P  Generic point ( )z,y,x  

iF  Facet i  --- 

´ Prime coordinates denote 
projection onto a plane. --- 

 
A. BSP 

Binary Space Partitioning algorithm (BSP) [12, 14] 
envelops a hierarchical structure (binary tree) in which all 
the patches can be arranged easily. First, a facet is 
randomly taken as reference (this is the root of the binary 
tree). The plane in which this triangle is contained splits 
the space into two subspaces (front and back). Therefore, 
some other patches could be intersected by this plane. In 
such a situation, every intersected patch would generate 
two new flat polygons (usually a triangle and a 
quadrilateral –discretized in two triangles– ) One belongs 
to the front-half-space and the other to the back-half-
space. All the patches (new and original) located in the 
front-half-space will take place in the left subtree while 

the back-half-space ones will do it in the right. For every 
subspace a new reference is chosen. This is inserted in 
the BSP tree as a node and the whole process is repeated 
recursively. When one facet is the unique element in a 
half-space, the patch acts as a leaf in the tree and the 
recursion finishes.  

The relationship among different nodes in the binary 
tree remains invariable even though the location of the 
source would change. Consequently the tree needs to be 
built only once and its computational cost Buildt  is [15], 
 

2
Nt)1N(log)1N(

2

Build2 ≤≤++  (1) 

 
where N  is the number of facets.   

BSP algorithm is able to extract a list of patches 
which can be seen from a point of view when the 
direction of the target is specified. In order to extract 
those elements, the binary tree is walked and the decision 
of including the triangle in the list or not depends 
basically on the angle between the target direction and 
the outward normal vector of the patch (a parallel 
projection onto a plane perpendicular to the target vector 
is accomplished). This operation implies a linear cost 

Walkt  [15], 
 

)N(tWalk Θ= . (2) 
 
 The list resulting from walking the tree satisfies that 

the nth element could be occluded by elements 1 to n-1 
(it is not necessary to test all the pairs of patches in the 
geometry). Therefore an additional algorithm to know 
whether a facet obscures other patches is indispensable.    

One of the disadvantages to underline is that the 
parallel projection restricts the scope to scenarios where 
the point of view is situated far from the observation 
points. Otherwise, the hierarchical structure can be useful 
in other applications apart from visibility.  

Our implementation classifies the patches in front-
half-space or back-half-space based on the coordinates of 
the barycentre. As a result, the process of clipping the 
intersected patches is avoided and kept back to the 
Trimming Method.  

 
B. Trimming Method 

The Trimming Method is the most accurate visibility 
algorithm due to the fact that the output geometry 
coincides exactly with the lit zones. Every partially lit 
facet is trimmed, so new completely lit and completely 
shadowed polygons appear. This is an exact solution to 
avoid fixing a threshold for deciding whether a partial 
occluded triangle is viewed or not. 

First, the N facets (shown in Fig. 1 (a)) are sorted by 
their distance from the source point s with indexes 

N,,2,1i …=  (this is one of the basic actions to go into 
when a visibility problem must be solved). The nearest 
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facet F1 can always be seen (marked in Fig. 1 (b)). The 
projection plane is defined by the target direction t̂  and 
the barycentre of the furthest facet N

cP  and its equation 
can be written as, 

 

( ) 0t̂ N
c =−⋅ PP  (3) 

 
(the projection plane has also been depicted in Fig. 1 (b)). 

 

 
(a) 

 
(b) 

 
Fig. 1. (a) The original geometry, source point s  and 
target direction t̂ . (b) Facets which verify the normal 
criterion. The nearest facet to the source point has been 
marked. The projection plane has been depicted too. 

 
The three vertices i

dV  ( )3,2,1d =  of each triangular 
patch ( )N,,2,1i …=  are projected onto the above 
mentioned plane by performing a perspective projection 
whose focus is the source point s . The coordinates 

( )z,y,x'P  of the projection of a generic point ( )z,y,xP  
are, 

( )

⎥
⎥

⎦

⎤

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛⋅+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅+

⎢
⎢

⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛⋅⋅=

−−

−

ẑ1,
z
y,

z
xt̂ŷ

y
z,1,

y
xt̂

x̂
x
z,

x
y,1t̂t̂'

11

1
N
cPP

. (4) 

 

Now let’s take 'NN
CC

PP =  the origin of a new 
rectangular coordinate system whose orthogonal vector 
basis is [ ]v̂,û,t̂  where, 

 

'N
1

'N
2

'N
1

'N
2û

VV

VV

−

−
=  (5) 

and 

ût̂
ût̂v̂

×
×

= . (6) 

 
It is clear that every point ( )v,u,t'P  in the projection 

plane can be expressed as,  
 

( ) ( ) N
cz,y,x'v̂vûut̂0v,u,t' PPP −=++=  (7) 

with 
( )( ) ûz,y,x'u N

c ⋅−= PP , (8) 

( )( ) v̂z,y,x'v N
c ⋅−= PP . (9) 

 
This transformation will be helpful to carry out union 

and intersection operations in two dimensions. Figure 2 
shows the projection plane and all the projected 
triangular patches of the geometry in u-v coordinates.  

 

 
Fig. 2. Projection of the triangular patches onto the 
projection plane (u-v coordinates). The nearest facet is 
marked. 

 
Afterward, the test polygon O is created with the aim 

of keeping updated the piece of surface associated with lit 
facets in the iteration i (i=1,2,...,N). That is, at the 
beginning, 

t̂  

s  

t̂  

s  
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11 FO = . (10) 
The next facet to consider is F2. Therefore an 

intersection operation between the test polygon and F2 is 
performed. If the result is the empty set, the triangular 
patch F2 will join the test polygon as an independent 
domain. If both the test and F2 share a piece of surface 
the updated test polygon O2 will result from the union 

operation between that polygon and the facet F2. The 
algorithm iterates over all the facets. 

 
( )( ) N,,3,2iFOFOO i1ii1ii …∩∪ =−= −− . (11) 

 
Figure 3 summarizes different relative positions of 

the facet iF  and the test polygon.  
 

 
Fig. 3. Example of relative positions. Left, test polygon Oi-1 and facet Fi. Right, test polygon Oi . (a) The facet is 
completely added to Oi-1. (b) The triangular patch is inside the test polygon. No modification of Oi-1 occurs. (c) The 
facet is trimmed due to the intersection with Oi-1. 

(a)

(b) 

(c) 

1iO −iF  iO  

iF  

1iO −

iF  

iO

iO1iO −
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The following step consists of a reference system 
transformation and an inverse perspective projection to 
retrieve the 3D original coordinates (see Fig. 4). The 
trimmed geometry is made of the vertices in the test 
polygon. Nevertheless, a table which matches every 
projected point 'P  with its corresponding facet i  has 
been previously filled (the projection of various points 
can coincide).  

 

 
(a) 

 
(b) 

 
Fig. 4. (a) Inverse perspective projection of the trimmed 
facets. (b) Geometry after applying Trimming method.  

 
An identical scheme can be maintained with two or 

more equally spaced projection planes (a division with 
dependence on the distance –in the plane XY– from the 
source point is now implemented). Let’s denote 1B  the 
furthest projection plane from s  and MB , the nearest one 
(Figure 5 depicts three projection planes). A point P  is 
located between two projection planes mB  and 1mB +  
when,  

⎪⎭

⎪
⎬
⎫

<+⋅

>+⋅

+ 0Dt̂
0Dt̂

1m

m

P
P

 (12) 

 
where m  ranges from 1 to M-1 and Dm depends on the 
distance from Bm to the source point s . Note that all the 
projection planes are parallel to Bl  and, consequently, the 
normal vector is the same t̂  for all of them. 
 

 
Fig. 5. Example of three projection planes ( 3M = ) in the 
Trimming Method. 

 
The process starts with the facets in front of BM. The 

resulting test polygon ON  is utilized as a filter to discard 
facets for BM-1.This process is faster than making the 
comparison facet per facet. In spite of this, a previous 
trimming operation is carried out for the first M-1 planes. 
As a consequence, the location of the source, s , the 
target direction , t̂ , and the number of facets, N , 
influence the reduction (or increase) of the computational 
time.        

The main advantage, accuracy, has already been 
discussed but the complexity of the algorithm because of 
union and intersection operations leads to a high 
computational cost in comparison with other 
methodologies (see Section III). Likewise, the trimming 
process implies the generation of new facets. Therefore, 
the mesh will contain more triangles and the deviation 
from their mean size would be, in general, greater than 
the original one.  

 
C. Cone Method 

This method employs an approximation from 
triangles to circles in order to accelerate the process of 
reckoning visibility. 

A facet jF  is selected to compute shadow and lit 
regions. The source point s  and each of the three vertices 

j
1V , j

2V , j
3V  define the segments j

1sV , j
2sV , j

3sV . 
The angles between those segments and the target 

t̂  

s  

s  

1B  

2B  
3B  

t̂  
s
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direction t̂  are denoted by j
1γ , j

2γ , j
3γ  respectively. 

Then, the opening angle jα  can be easily calculated by 
weighting j

1γ , j
2γ  and j

3γ  and stored for subsequent 
comparisons, 

 

∑=
=

3

1l

j
ll

j c γα  (13) 

 
with lc  representing the weighting coefficients. 

 
With the purpose of clarifying the procedure, Fig. 6 

is presented: suppose that the three vertices j
lV  and the 

barycentre j
cP are projected onto a plane perpendicular to 

the target direction t̂ , the same way Trimming Method 
does. Provided that 'j

lV  and analogically 'j
cP  are 

obtained from equation (4), the jα  value determines the 
radius jR  of the right cone whose axis is parallel to t̂ . 

Any point in shadow will be situated behind the 
plane which contains the triangular patch jF , 

 

( ) 0n̂ j
c

j <−⋅ PP  (14) 
 

and inside the right cone previously defined. Therefore, 
in a local Cartesian coordinate system where the source 
point is in the origin, the angle between the position 
vector of that point and the target direction t̂  must be 
smaller than the opening angle jα , 

 

j1 t̂cos α<⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ⋅−

P
P . (15) 

 
 

 
Fig. 6. Cone Method. The angle between the segments j

1sV , j
2sV , j

3sV  and the target direction t̂ is weighted so the 

opening angle jα  is obtained and consequently the radius of the cone jR . Every facet whose barycentre i
cP  ( ji ≠ ) is 

located inside the cone and behind the triangular patch jF  is assumed to be occluded. 

Source point 
s  

j
1V

j
2V

'j
2V

jR

jα

j
3V

j
cP

'j
3V

'j
1V

'j
cP

t̂
jF
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The key of the accuracy in the Cone Method, apart 
from the number of points which characterizes a facet, is 
the choice of the factor which weights the angles j

lγ : a 
great factor would not eliminate some contiguous 
triangular patches but a small one would keep some 
occluded facets. Simulations have proven that the best 
adjust to trimming results are achieved when the 
weighting factor corresponds with the arithmetic mean of 
the three angles.  

Until this moment, the visibility problem in Cone 
Method has been reduced to points instead of facets. A 
facet is in shadow when there is, at least, one triangle 
which intersects the line of sight between the source point 
and its barycentre, although other characterizations can 
be performed for this and Pyramid methods –e.g. 3 
vertices, inner points, etc– but an increase in the 
computational time must be expected. Finally, a sweep 
all over the facets in the sorted list is carried out. 

 
D. Pyramid Method 

The Pyramid Method is a special type of the Cone 
Method where the base is not circular. This algorithm 
determines if any point in the geometry is occluded by a 
specific facet.  

Assume all the facets have been sorted by the 
distance from their barycentre to the source point s . The 
closest triangular patch is always seen but could occlude 
other facets. The plane which contains the reference facet 
Fj is considered.  

 
( ) 0n̂ j

c
j =−⋅ PP . (16) 

 
Three additional planes are defined by taking into 

account every edge j
2

j
1 VV , j

3
j

2 VV , j
1

j
3 VV  of Fj and s . 

A generic point P  in one of these planes must satisfy the 
corresponding plane equations in (17) to (19), 

 

0
j

1
j

2

j
1

j
2 =⋅
×

×
P

VV

VV
 (17) 

0
j

2
j

3

j
2

j
3 =⋅
×

×
P

VV

VV
, (18) 

0
j

3
j

1

j
3

j
1 =⋅
×

×
P

VV

VV
. (19) 

 
The intersection of the last three planes generates the 

faces of a pyramid whose base is Fj (see Fig. 7). In order 
to know if a point P  is inside the pyramid, the left side in 
equation (20) is evaluated. When the result equals the 
number of vertices of the base, P  is enclosed by the 

pyramid (the vertices of Fj are supposed to appear in 
clockwise or anti-clockwise order).   

 

3sign
3

1i j
i

j
1i

j
i

j
1i =∑ ⋅
×

×

= +

+ P
VV

VV
 (20) 

 

where j
1

j
4 VV = . The other constraint is identical to 

equation (14) in Cone Method.    
This method complements the BSP once the priority 

list has been obtained. 
The mentioned idea about SVP and AZB in Section I 

is adapted to Trimming, Cone and Pyramid methods. Not 
only cubic or parallelepipedic domains are not created 
but also conical. Instead, the z-coordinate is neglected 
and equally-spaced angular sectors (corresponding with 
angle φ  in a local cylindrical coordinate system) are 
delimited (Figure 8). Supposing L  sectors, the equally-
spaced limit angles are L21 ,,, βββ … , 

 

1L1 +≤≤ βφβ . (21) 
 

A facet jF  belongs to sector l  if its barycentre l
cP  

is inside its boundaries (except for Trimming Method, 
where the triangular patches are, of course, trimmed), 

 

⎪⎩

⎪
⎨
⎧

<+−

>+−

++ 0cossin

0cossin

1211

21

l
j

cl
j

c

l
j

cl
j

c

ββ

ββ

PP

PP
   (22) 

 
with 1L,,2,1l −= … .  

Acceleration is expected depending on the number of 
triangles the geometry is composed of. 

 
III. SIMULATED RESULTS 

 
Once the algorithms have been presented, a comparison 

in terms of accuracy and computational time is carried 
out among the CPU implementation of the BSP Method 
and the three new methods Trimming, Cone and Pyramid.  
 
A. PEC Plates 

This example consists of a first comparison among 
the already presented algorithms and a simple Z-buffer 
implementation where the facets are not trimmed.  

The scenario is compound of two square parallel PEC 
plates. They are the same size, 10λ, and the distance 
between them is dp=5 λ. The first plate is located in the 
XY plane. The position of the center of the second plate 
varies along the Y-axis from (0,-10λ,-dp) to (0, -10λ, dp) 
with step λ=Δy . Three different meshes have been 
considered to evaluate the computational time with 
respect to the number of facets: 200, 800 and 1800. 
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Fig. 7. Pyramid Method. The facet Fj acts as reference. Its edges and the source point s  define three planes (pyramid). 
The facet Fi intersects some of them but is not in shadow because it is situated in front of Fj . 

 

 
Fig. 8. Sectorial division  ( 3L = ) of the geometry. 

 
An incident plane wave impinges the surface after 

determining which facets are illuminated. The Physical 
Optics approximation [16] establishes that the incident 
field induces an electric current density J ,  

 
incn̂2 HJ ×≈  (23) 

with n̂  the outward normal vector and incH  the 
magnetic incident field in the patch. 

The scattered electric field sE  due to a flat 
triangular patch is reckoned analytically in [17] and the 
first reflection contribution (denoted by σ) is calculated 
as, 

 

2inc

2s
12

r ||
||

4lim
E
E

rπσ
∞→

=  (24) 

 
where incE  represents the incident electric field; s

1E , the 
total scattered electric field due to the contribution of the 
first reflection on the illuminated facets and r  is the 
distance from the radar to the target. 

The results in Fig. 9 show a perfect agreement where 
the facets do not need to be trimmed due to the selected 
step. Table 2 summarizes the computational time for each 
algorithm. Our simple Z-buffer implementation has 
associated higher computational time than Pyramid and 
Trimming Methods. Likewise, a generic scenario where 
the facets could be partially occluded would require a 

i
3V

Source 
point 

s  

iF

j
3V

j
1V

j
2V

i
2V

i
1V

'i
1V

'i
2V

'i
3V

jF

275MEANA, LAS-HERAS, MARTINEZ-LORENZO: COMPARISON AMONG FAST VISIBILITY ALGORITHMS 



more complex Z-buffer implementation capable of 
trimming facets. Consequently its computational time is 
estimated to surpass even the Trimming Method values.  
 

 
Fig. 9. Simulated results for two PEC plates. The first 
reflection σ  contribution has been normalized.  
 
Table 2. Plates example. Computational time comparison. 
 

 
Computational time (sec) 

200 facets 800 facets 1800 
facets 

M
et

ho
ds

 

Trimming 0.6689 2.6486 6.0955 

Cone 0.0499 0.4123 1.4716 

Pyramid 0.0841 0.4432 1.6278 

BSP 0.1890 1.3012 5.2432 

Z-buffer 0.1711 0.6806 1.7561 

 
B. PEC Spheres 

A geometry consisting of two perfect electric 
conductor (PEC) spheres (radius r=10λ) whose centres 
are separated d = 3r = 30λ is defined (Figure 10).   

In order to analyze the influence of the discretization 
in the results, three meshes have been selected: 392, 1352 
and 2888 triangles per sphere (the increase in the number 
of patches improves the correct modelling of the 
spherical surface). Therefore, the difference between two 
configurations lies in the fact of considering lit or hidden 
a facet which is occluded partially (when Trimming is not 
active).  

A directional sweep is performed from º45−=φ  to 
º135=φ  with step of º1=Δφ . The simulated results are 

calculated analogically to the previous section. Tables 3 
to 5 show the average computational time for each 
geometry discretization and aspect angle as a function of 
the number of sectors (except for BSP Method where the 
time due to the creation of the BSP tree has been 

uniformly distributed among the Q=181 aspect angles). 
The least values (best time) have been marked and their 
corresponding first reflection contributions have been 
depicted in Figs. 11 to 13. The proposed methods present 
a good coincidence in the central area of the graphics but 
not in the limits where one sphere starts to partially 
occlude the other. In this context, the dimensions of the 
patches and the lit/shadowed classification based on their 
barycentre have relevance.  

 
Table 3. Spheres example. Computational time and 
relative error comparisons. 784 facets. 

 

784 facets Computational time (sec) | Relative Error δ(%) 

1 sector 3 sectors 6 sectors 

M
et

ho
ds

 

Trimming 1.54 1.96 2.48 

Cone 0.045 | 4.58 0.035 | 4.92 0.036 | 5.24 

Pyramid 0.080 | 8.12 0.075 | 9.51 0.079 | 10.48 

BSP 0.49 | 13.04 

 
Table 4. Spheres example. Computational time and 
relative error comparisons. 2704 facets. 
 

2704 facets Computational time (sec) | Relative Error δ(%) 

1 sector 3 sectors 6 sectors 

M
et

ho
ds

 

Trimming 5.02 5.78 6.74 

Cone 0.29 | 6.42 0.16 | 6.48 0.13 | 6.54 

Pyramid 0.42 | 10.42 0.30 | 11.11 0.26 | 13.52 

BSP 3.47 | 10.89 

 
Table 5. Spheres example. Computational time and 
relative error comparisons. 5776 facets. 

 

5776 facets Computational time (sec) | Relative Error δ(%) 

1 sector 3 sectors 6 sectors 

M
et

ho
ds

 

Trimming 11.52 12.25 13.17 

Cone 1.15 | 4.67 0.51 | 5.79 0.32 | 5.94 

Pyramid 1.37 | 5.81 0.78 | 6.29 0.60 | 6.46 

BSP 13.19 | 6.42 

 
In order to compare the differences between the 

Trimming Method and the other techniques, the absolute 
error Δ  has been calculated in equation (25), 

 
ref
ii σσ −=Δ  (25) 

 
where  iσ  and ref

iσ  are the first reflection value and 
first reflection reference value (Trimming) in the ith 
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aspect angle respectively. Figures 14 to 16 represent 
these absolute errors for the best fit solution. The 
graphics confirms that the error increases near º45−=φ  
and º135=φ  as mentioned. Equation (26) introduces a 
relative error ( )%δ . 

 

( ) 100
Q
1%

Q

1i ref
i

ref
ii ⋅∑

−
=

= σ

σσ
δ . (26) 

 
 

 
Fig. 10. Spheres example. Geometry description. 
Spherical coordinates for the centre of the spheres are: 

( ) ( )0,4,r5.1z,,C1 πφρ −=  and ( ) ( )0,43,r5.1z,,C2 πφρ = . 
The radius r  equals to 10 λ  and the separation between 
centres is λ30r3d == . 
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Fig. 11. Spheres example. First reflection contribution. 
Best time comparison, 784 facets. 
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Fig. 12. Spheres example. First reflection contribution. 
Best time comparison, 2704 facets. 
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Fig. 13. Spheres example. First reflection contribution. 
Best time comparison, 5776 facets. 
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Fig. 14. Spheres example. Absolute error of the first 
reflection contribution with respect to Trimming Method, 
784 facets. 
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Fig. 15. Spheres example. Absolute error of the first 
reflection contribution with respect to Trimming Method, 
2704 facets. 
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Fig. 16. Spheres example. Absolute error of the first 
reflection contribution with respect to Trimming Method, 
5776 facets. 

 
Tables 3 to 5 summarize these errors. The underlined 

cells are associated with the least errors for each of the 
techniques and discretizations. Best time and best fit 
results do not usually come from the same configuration. 
Therefore a midway solution must be adopted and an 
important computational time reduction is usually 
preferred, even though it would imply an error increase. 
BSP errors exceed Trimming and Cone results and all 
errors tend to increase with the number of sectors 
(because of the rough classification of the facets). 
Finally, an example of the lit triangular patches is 
presented in Fig. 17 in a Lambert azimuthal equal-area 
projection for the sphere in the second quadrant.  Figure 
17(b) corresponds to the Trimming Method and acts as 
reference for the graphics (a), (c) and (d). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 17. Lambert azimuthal equal-area projection of the 
sphere in the second quadrant. Light grey facets 
correspond to a semi-sphere projection (grid). Dark grey 
facets represent the lit triangles due to (a) BSP, (b) 
Trimming Method, (c) Cone Method, (d) Pyramid 
Method. (Aspect angle=-21º). 
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IV. CONCLUSION 
 

This paper has presented four different methods to 
solve the visibility problem and a comparison of the first 
reflection contribution in terms of computational time 
and error has been performed based on CPU 
implementations.  

Binary Space Partitioning uses a hierarchical 
structure to sort the patches in the space. The 
implementation of this well known algorithm has been 
divided into three phases: building and walking the 
binary tree and discarding the occluded triangles. It is 
suitable for scenarios where the point of view is situated 
outside the geometry because of the parallel projection 
which is carried out. Nonetheless, the computational cost 
is greater than the other techniques which provide similar 
or better accuracy (only a huge amount of angular 
directions could justify the creation of the BSP tree in 
terms of computational cost).  

The new Trimming Method solves the visibility 
problem in an exact manner by means of a perspective 
projection and the definition of a test polygon. As a 
result, the original facets are partially occluded are 
trimmed. Therefore, only the lit surface is returned. The 
number of patches increases and the facet mean size 
tends to be smaller than the initial one.  The re-definition 
of the triangular patches is not convenient for computing 
reflections. On the other hand, the high number of 
operations lead to a high computational cost. 

The Cone Method replaces the original facets by 
circles and creates a fictitious right cone whose vertex is 
the source point. The piece of surface behind the plane 
which contains a facet and inside its cone is in shadow.  
This technique is the fastest one and Figs. 11 to 13 and 
Tables 3 to 5 have shown that the corresponding relative 
error is small.  

The Pyramid Method tests whether a point satisfies 
equation (20), where each summand is related to one of 
the faces of the pyramid in Fig. 7. It employs the plane 
equation to quickly solve the problem; but it still takes 
twice the computational time taken by Cone Method. In 
addition, the technique can be extrapolated to n-edged 
polygons, where substituting polygons by circles would 
be inadequate.   

A simple CPU implementation of the Z-buffer 
algorithm, where the geometry is not trimmed, has been 
also evaluated. The results have proven Z-buffer 
algorithm to be less time-efficient for our purpose than 
Pyramid and Cone Methods.   

As the number of patches in the geometry ranges 
from 784 to 5776, the first reflection contribution varies 
because of the improvement on the modelling of the 
geometry. In this context, a smoother surface leads to 
more realistic results. 
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