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Abstract − This paper deals with the efficient 
combination of three well-established electromagnetic 
modeling methods, a Shooting-and-Bouncing-Rays 
(SBR) algorithm on the basis of the Geometrical Optics 
(GO), a source-based calculation of scattered field 
strengths using Physical Optics (PO) and Physical Theory 
of Diffraction (PTD), and diffraction calculation on the 
basis of the Uniform Theory of Diffraction (UTD). While 
the conventional GO-PO/PTD methods are able to 
accurately calculate wedge contributions to scattered 
fields, the further propagation of diffracted rays is 
generally not considered in SBR approaches. Thus, the 
aim of this paper is to describe the implementation of 
diffracted rays according to the UTD concept into an 
SBR code. This novel implementation allows for the 
modeling of double diffraction and reflected-diffracted-
reflected paths in complex scenarios consisting of a very 
large number of surface elements as well as the accurate 
simulation of cavities. The comparison with numerically 
exact reference simulations proves that the proposed 
hybrid GO/UTD-PO/PTD algorithm yields excellent 
results and that the UTD-SBR extension definitely 
improves the simulations of the ray tracing algorithm also 
for realistic objects. 
 
Keywords: Numerical modeling, physical optics (PO), 
radar cross section (RCS), ray tracing, and uniform 
theory of diffraction (UTD). 
 

I. INTRODUCTION 
 

Accurate simulation of electromagnetic scattered 
fields is a very important research topic, because it is 
generally faster and cheaper than performing 
measurements, especially if complex or large-scale 
objects are involved. Moreover, a variety of geometry 
parameters can be studied easily and optimized, if 
required. Thus, the main application of such simulation 
programs is the prediction of scattered fields as well as 
the indication of scattering centers. The simulation results 
can be used to generate databases for target identification, 
for testing low-observability (LO) measures, and for 
developing specifications for various radar systems. 

For finding the relevant propagation paths, most 
high-frequency approaches are using either a Shooting-

and-Bouncing-Rays (SBR) algorithm [1, 2], which is 
commonly applied for objects made up of a very large 
number of surface elements, or the so-called image 
method (sometimes also referred to as image-tree method 
or method of images) [3-5], which works fine for a small 
number of large surface elements. In the context of high-
frequency methods, sometimes a distinction is made 
between ray launching (in the sense of SBR) and ray 
tracing (in the sense of an image approach), which might 
lead to confusion. Generally, however, the term ray 
tracing is applied as umbrella term for all approaches 
using rays in order to find relevant propagation paths, i.e. 
SBR and image method are considered as different ray 
tracing approaches. The latter is also the convention used 
within this paper. 

A very powerful ray tracing simulation approach 
based on SBR has been proposed in [1], showing 
excellent results even for complex objects such as real-
scale aircraft at radar relevant frequencies. The algorithm 
is able to treat arbitrary objects and has practically no 
limitations concerning object size and the number of 
reflections to take into account. Due to the use of 
asymptotic methods, it is well-suited for simulations of 
large objects that cannot be modeled with numerically 
exact methods such as the Method of Moments (MoM) 
on current computer equipment. A detailed description of 
the algorithm as well as a discussion on alternative 
methods is available in [1]. 

This paper presents a further hybridization of the 
algorithm in order to improve the accuracy for lower 
frequencies, where diffraction is relevant. Although the 
approach in [1] considers diffracted field contributions 
within the Physical Theory of Diffraction (PTD) – which 
is similar to the XPATCH code [2] – the further 
propagation of diffracted rays is neglected, and so 
diffracted-reflected and double-diffracted ray paths, for 
example, are not included. However, these contributions 
may be significant at lower frequencies or at special 
geometries, as is proven in the following. After a brief 
review of the ray tracing algorithm presented in [1], 
which also demonstrates its limitations, the 
implementation of the Uniform Theory of Diffraction 
(UTD) is discussed in Section III. It must be pointed out 
that the aim of this paper is to describe the 
implementation of the UTD into an SBR code, rather than 
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explaining the details and limitations of the UTD itself. 
The simulation results in Section IV clearly show that the 
UTD extension provides a very useful enhancement of 
the ray tracing algorithm and definitely improves the 
accuracy of the results. 

The UTD is a well-known high-frequency concept, 
which has been applied earlier within asymptotic 
methods, including hybrid SBR-image approaches [6] 
hybrid Finite-Elements methods [7], and mode matching 
approaches [8, 9]. However, combined reflected-
diffracted propagation paths are not easy to treat in most 
UTD implementations, especially if higher-order 
interactions are relevant [4, 5, 10]. Contrary, the UTD 
implementation as presented in this paper avoids the 
analytical calculation of relevant diffracted propagation 
paths by following the SBR principles, i.e., starting from 
the point of diffraction, new rays are calculated and 
traced further through the scenario. This approach makes 
the UTD ray tracing algorithm much more versatile with 
the cost of increased computation efforts, of course. 
Nevertheless, today’s development in fast computers 
makes the calculations executable on a standard PC with 
reasonable expenditure of time, so facetted CAD models 
of complex objects consisting of thousands or even 
hundreds of thousands of surface elements can be 
modeled with excellent accuracy. 
 
II. RAY TRACING USING DISCRETE RAYS AND 

PO/PTD 
 
A. Summary and Aim of the Implemented Ray Tracing 
Technique 

This section will give a brief review on the 
implemented ray tracing approach, which is the basis for 
the UTD extension described in the subsequent sections. 
Emphasis will be put on the ray concept applied in the 
simulation code, rather than explaining the underlying 
theoretical principles. A more detailed description of the 
ray tracing algorithm and various simulation examples 
are available in [1]. The aim of this algorithm is to 
constitute a universally applicable high-frequency 
prediction tool, which can be used for RCS calculation of 
arbitrary complex objects by performing the simulation 
on facetted CAD models. For example, realistic aircraft 
models may require more than 100,000 facets with 
multiple interactions, which is the main reason why SBR 
is chosen in [1]. 

First of all, it must be noted that the implemented ray 
tracing algorithm works with discrete rays, which are 
taken as representatives of the so-called astigmatic ray 
tubes [11]. Thus, intersection tests with geometric 
structures are rather fast (compared to the tracing of ray 
tubes) on the one hand and on the other hand such a ray 
carries all necessary information of a ray tube, e.g. the 
radii of curvature of the corresponding wave front. 
Starting from a given transmitter, a specified number of 

rays is launched towards the object and traced according 
to the well-known SBR technique [12]. This approach 
allows the accurate modeling of large and complex 
objects because the required memory is independent of 
the number of reflections to take into account. The 
approach of discrete rays is combined with a ray-density 
normalization (RDN) [13], which provides the number of 
rays per cross section at any point of the ray trajectories. 

However, the GO is not well-suited for calculating 
scattered fields of arbitrary finite objects because it 
assumes, e.g., reflections at infinitely extended surfaces. 
That is the reason why the RDN has been combined with 
Physical Optics (PO) and the PTD, which are able to 
calculate scattered fields as an integral over the surface 
and edges, respectively. As the RDN states the number of 
rays per unit area, it is used to calculate the equivalent 
surface area or edge length of each single ray hitting a 
geometrical object. This figure serves as the integration 
area for the PO and PTD formulation, respectively. 
However, it must be noted that the exact shape of the 
surface area corresponding to a single ray remains 
unknown. Fortunately, provided a dense grid of rays hits 
the surface (e.g. 10 rays per wavelength), the PO integral 
is proportional to the geometrical size of that area, so the 
surface area corresponding to a single ray can be assumed 
to be a square and the PO integral reduces to a sum of ray 
contributions. 

In summary, the hybrid GO-PO/PTD approach uses 
the laws of GO (i.e. the law of reflection) merely for 
calculating geometrical ray propagation paths and the 
fields on these paths, while at each intersection of a ray 
with the object PO/PTD is applied for the scattered field 
contributions towards the point of observation. 
 
B. Rays and Propagation Paths 

For the understanding of the approach presented in 
this paper, it is important to distinguish between rays and 
propagation paths. In this context, a ray shall be defined 
as a directional straight geometrical connection between 
two points in three-dimensional space. Thus, e.g., a ray 
might hit a surface and generate a reflected ray, whose 
direction is given by the laws of GO. Additionally, the 
first ray generates a PO (or PTD) contribution to a point 
of observation, so the combination of the incident ray and 
the PO/PTD contribution shall be denoted as a 
propagation path. More generally speaking, a GO-
PO/PTD propagation path consists of the incident ray 
(which hits the object), m reflected rays (m ≥ 0), and one 
PO or PTD contribution to the point of observation. Thus, 
the approach of [1] accounts for single diffraction 
occurring at the last step of the propagation path. 
However, as is shown in this paper, diffracted rays are 
relevant for certain geometric objects. A diffracted ray is 
generated by a ray hitting an edge of the object, which 
means that the diffracted ray starts at the edge. In the 
further ray tracing process, this ray may also generate 
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reflected rays and PO/PTD contributions. Therefore a 
new class of propagation paths is introduced by the 
extension of the original approach: GO/UTD-PO/PTD 
propagation paths, which consist of the incident ray, m1 
reflected rays (m1 ≥ 0), one diffraction according to the 
laws of UTD, m2 reflected rays (m2 ≥ 1), and finally one 
PO or PTD contribution to the point of observation. Note 
that m2 ≥ 1 is assumed because m2 = 0 would result in 
calculating the contribution of diffracted fields to the 
point of observation, which is performed using PTD [1]. 

The GO/UTD-PO/PTD approach introduces paths 
with double diffraction but also other important single 
diffraction paths, which are generally not included in 
SBR codes. For example, an incident ray might hit the 
aperture edge of a cavity and generate diffracted rays 
propagating into the cavity. After m2 reflections inside the 
cavity, a relevant contribution towards the receiver in the 
exterior space might be observed. As is shown in the 
following, these additional paths can significantly 
improve the accuracy of an SBR code, especially when 
cavities or general non-convex objects are involved. 
 
C. Examples and Limitations of the GO-PO/PTD 
Approach 

While the simulation examples in [1] show an 
excellent agreement of the ray tracing results with the 
reference data, this subsection emphasizes on special 
scenarios where diffracted rays might experience further 
interactions with the object and thus yield significant 
contributions that are neglected in the GO-PO/PTD 
approach. 

A classic reference object is the trihedral corner 
reflector (e.g., [5, 14]), which is made up of three right-
angled triangles that are assembled like a pyramid. Here, 
the object has an edge length of a = 1.41 m at the 
aperture. The aperture angle is γ = 90° and the Trihedral 
is inclined by α0 = 35, 3° in the direction of elevation (see  

Fig. 1). Thus, the x-axis is perpendicular to the 
aperture. The faces of the Trihedral are assumed to have 
zero thickness. 

x

z

yedge length
a = 1.41 m

γ = 90°

α0 = 90° - 54.7° = 35.3°

α

 
 
Fig. 1. Geometry of the trihedral corner reflector. 

As can be seen in the monostatic RCS simulations in 
[1], the PTD provides a significant improvement 
compared to the PO only simulation (note that [1] uses 
α' = -α). However, deviations are observed at angles 
where the observation point is close to the aperture plane, 
i.e. α → ±90°. As will be shown later, these deviations 
are due to missing diffracted field contributions. An even 
more severe deviation is found in the results of the 
bistatic RCS simulation of the Trihedral. An example 
simulation has been performed depending on the 
elevation angle α with a total of N = 10 million rays (Fig. 
2). The direction of the incident wave is perpendicular to 
the aperture, i.e., αi = 0°. As can be seen from the 
reference Boundary-Integral-MLFMM (BI-MLFMM) 
simulation, the RCS curve of the vv-polarization exhibits 
a distinct step around α = -35°, which is not reproduced 
at all with the ray tracing simulation results. Furthermore, 
both polarizations show major deviations in the angular 
range from +90° to +145°, which is part of the forward-
scattering halfspace. For a better understanding of these 
results, a detailed analysis of the corresponding scattering 
directions and the relevant propagation paths is 
necessary. Obviously, the maximum of the bistatic RCS 
corresponds to the backscattering case, whereas the 
second maximum at α = -70° is caused by rays hitting the 
Trihedral near the top corner (see Fig. 1). Due to 
geometrical reasons, the corners do not contribute to 
triple reflection [15]. Thus, such rays are doubly-reflected 
in that corner and – instead of a third reflection at the 
lower facet – exit the scenario towards the angle α = -
70.6°. From these considerations, the step at α = -35° can 
be interpreted as a shadow effect caused by the lower 
facet. From α = 0° to α = -35°, the complete interior of 
the Trihedral is visible to the observation point, so no 
shadowing effects will occur. Contrary, the interior of the 
lower facet is not visible at angles beyond -35°. A similar 
effect is observed at angles beyond +90°. Here the 
interior of the Trihedral is not visible at all, which leads 
to rather small RCS values. In this angular region, 
diffraction at the aperture wedges is the main propagation 
mechanism. Note that the maximum at α = ±180° 
corresponds to forward scattering and does not represent 
the total field strength. 

According to the ray tracing method described in [1], 
each reflection of a GO ray is associated with a PO (and 
possibly PTD) surface current, which yields a 
contribution to the scattered field strength. Thus, 
shadowing effects are reproduced by the superposition of 
at least two PO contributions. As an example, consider an 
incident ray hitting the lower facet. In the basic form of 
the algorithm, the PO surface current contribution is 
calculated to any observation point, regardless of 
visibility. The reflected ray hits one of the upper facets 
and generates a second PO surface current. Ideally, these 
contributions should interfere destructively for 
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observation points that are not visible from the point of 
the first reflection. However, this is true only for 
observation points located in the specular direction of the 
first reflection (at α = 110°). That is the reason why the 
results are closer to the reference solution at this angle 
(see Fig. 2). For observation points within the angular 
range from +90° to +145° but deviating from the specular 
direction, the phases of the two contributions are no 
longer correct, which results in the major inaccuracies 
observed in Fig. 2. At angles beyond +145°, the 
observation points are located behind the plane 
containing the lower facet, so forward scattering is the 
main contribution and yields a good accuracy. 

 

 

 
 
Fig. 2. Bistatic RCS of the trihedral corner reflector 
(f = 15 GHz, PO/PTD without shadowing). 

 
As a possible improvement to the shadowing 

problem, in Fig. 3 contributions are calculated only if the 
observation point is visible from the point of interaction 
and, additionally, for forward scattering. The result of this 
approach shows definitely improved data in the range 
from +90° to +145°. But, unfortunately, the results are 
worse in other angular regions, especially for the vv-
polarization at angles beyond -70°. Note that small peaks, 
e.g. at α = +145°, are due to the fact that the implemented 

PTD shows a singularity at grazing angles. Thus, these 
observation points are excluded from the PTD 
calculation, leading to a distinct step in the RCS curve. 
To summarize these studies, the example of bistatic 
scattering from a trihedral corner reflector clearly shows 
that the GO-PO/PTD approach has definite limitations at 
certain geometrical structures. 

Another important example of more practical use is a 
cavity, e.g. as described in [12]. Cavities are often used as 
simple models of jet engine inlet ducts, which are rather 
complex objects in the view of electromagnetic (EM) 
modeling. Thus, a variety of approaches has been studied 
in order to accurately model these objects, e.g. modal 
methods, GO with Aperture Integration, Gaussian Beams, 
Finite Element methods, and Iterative Physical Optics 
(IPO) [12, 16, 17, 18]. 

 

 
Fig. 3. Bistatic RCS of the trihedral corner reflector 
(f = 15 GHz, PO/PTD with shadowing). 
 

The object of the following studies consists of a 
cubic cavity with a side length of 10 λ (f = 3 GHz) and is 
a very elementary step towards the modeling of engine 
ducts. Additionally, this object is surrounded by a wall of 
1 λ thickness. The simulated monostatic RCS of the 
cavity is given in Fig. 4, together with the result of the 
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reference BI-MLFMM simulation. The angle α denotes 
the elevation angle with respect to the axis of the cavity, 
i.e., α = 0° corresponds to the incidence perpendicular to 
the aperture. 

 

 
Fig. 4. Monostatic RCS of the cubic cavity (f = 3 GHz, 
l = 10 λ, PO/PTD). 
 

A longer cavity (l = 30 λ) has also been modeled (see 
results in Fig. 5). Apart from the surrounding wall of 1 λ 
thickness, this object is identical to one of the simulation 
examples in [12]. As becomes obvious from Figs. 4 and 
5, the GO-PO/PTD ray tracing algorithm basically 
provides a satisfying accuracy at most angles. However, 
major deviations can be found at large elevation angles, 
which partly originate from the almost grazing incidence 
of rays at the aperture. Thus, the rays experience a large 
number of reflections inside the cavity, which is 
accounted for by setting the maximum number of 
reflections to Rmax = 50. Simulations with a higher 
number of reflections showed that this value is enough to 
ensure convergence. Thus, the deviations may be due to 
coupling effects that are not covered by the ray tracing 
approach.  

A closer look at the cavities and the trihedral corner 
reflector reveals that a complete class of possibly relevant 

propagation paths has been neglected so far, because the 
ray tracing algorithm presented in [1] does not trace 
diffracted rays. However, a ray may be diffracted at the 
aperture, continue propagating into the cavity, and finally 
– when it exits from the cavity – provide a significant 
contribution to the scattered field. In order to accomplish 
the tracing of diffracted rays, the implementation of the 
Uniform Theory of Diffraction (UTD) into the algorithm 
presented in [1] is described in the following section. 
Concerning the ray tracing procedure, the UTD for 
diffracted rays is the counterpart to the GO for reflected 
rays. It is important to note that in the simulation 
approach presented in this paper, the geometrical 
propagation paths and the fields on these paths are 
calculated according to the laws of GO and UTD (i.e. the 
law of reflection and the law of edge diffraction on the 
Keller cone), while the field contributions towards the 
point of observation are determined by PO and PTD, 
respectively. Thus, each time a ray hits a surface or edge, 
a PO (and possibly also PTD) current is calculated, which 
generates a contribution to the total scattered field 
strength. Altogether, a hybrid GO/UTD-PO/PTD 
simulation approach is developed. 
 

 
Fig. 5. Monostatic RCS of the cuboid cavity (f = 3 GHz, 
l = 30 λ, PO/PTD). 
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III. THE UNIFORM THEORY OF DIFFRACTION 
 
A. Principles of the UTD 

The UTD is a well-known high-frequency technique 
for the asymptotic calculation of diffracted fields and has 
been studied in various publications. In the present paper, 
only the basic UTD approach of diffraction from an 
infinite perfectly conducting wedge will be applied [19] 
in order to keep the additionally required CPU efforts as 
small as possible. Thus, there is no special treatment of 
shadow boundaries and no distinction between near and 
far field [3]. There are also UTD approaches for 
impedance edges [21, 22], which, of course, are much 
more complex than the standard UTD formulation. 

Concerning the implementation in a ray tracing 
algorithm, the most important attribute of the UTD 
concept is the assumed limitation of the diffracted field to 
the so-called Keller cone [20], which is the equivalent to 
the specular reflection of the GO. Each propagation path 
on the Keller cone can be identified with an angle φ , 
0° < φ < nπ , where nπ is the outer wedge angle. The 
angle β between the diffracted ray and the edge is 
identical to the angle β' between the incident ray and the 
edge. In the present form, UTD diffraction is applied only 
for first order diffraction. However, second order 
diffraction is implied by performing PTD on diffracted 
rays if they hit another edge. 

The UTD diffracted fields are basically determined 
by diffraction coefficients Ds and Dh (soft and hard 
polarization), which – similarly to the Fresnel reflection 
coefficients – denote the ratio between the incident field 
strength Ei and the diffracted field strength Ed, 

 
 ( ) ( ),

d i
s hE s D A s E=    (1) 

 
s denotes the distance from the edge to the point of 
observation [19]. A(s) is the spread factor describing the 
divergence of the diffracted wave and the Ds and Dh 
depend on the angle of incidence, the wedge angle, 
frequency, etc., and in a secondary way also on the 
distance s. In the context of the present paper, s does not 
correspond to a real far field point of observation, but is 
equal to the distance to the next intersection point on the 
object. From the view of the ray tracing algorithm, the 
quantity s is unknown at the time of calculating the 
diffraction coefficients because, typical to a SBR-
algorithm, no information on the future propagation path 
is available. Fortunately, this problem can be solved 
rather easily by launching a dummy ray to determine the 
distance to the next intersection or by applying the UTD 
coefficients later when s is known. 

Of course, due to the assumed simplifications, 
inaccuracies might occur if the next intersection point is 
too far away from an edge with finite length. 

Nevertheless, the results in Section IV show good 
accuracy for all simulation examples. 
 
B. Application to the Ray Tracing Technique 

According to the electromagnetic problem to be 
solved, different implementations of the theoretical 
concept of the UTD are known in literature. For example, 
if the problem consists of large flat surface elements, an 
image approach of UTD is rather convenient [6, 7]. For 
resonant structures such as large open-ended waveguides, 
a modal approach has been developed, which converts 
UTD diffracted rays into modes [8, 9]. This paper 
proposes a novel implementation of the UTD in a ray 
tracing code using discrete rays and RDN. Thus, the UTD 
is implemented in a pure SBR fashion, which is 
consistent to the original ray tracing code as summarized 
in Section II. 

Consider a ray that hits a wedge within the 
simulation scenario. According to the description in [1], 
this ray generates a PO contribution as well as a PTD 
contribution and afterwards is reflected towards the 
specular direction. Additionally, the UTD diffraction has 
to be performed, but at this stage, the relevant 
propagation paths are unknown. Note that a diffracted ray 
may experience several reflections before it generates a 
significant PO/PTD contribution towards an observation 
point. That is the reason why in the approach presented in 
this paper a large number NUTD of rays is generated on the 
Keller cone and further traced through the scenario 
according to the SBR principles. Like the original ray, the 
diffracted rays will generate PO and PTD contributions 
each time they hit a surface or edge. Theoretically, even 
higher order UTD diffraction can be treated with this 
approach, provided that shadow boundaries are treated 
adequately, but in most practical cases, such effects will 
not provide a relevant contribution to the total scattered 
fields. Actually, double diffraction is considered 
implicitly by using PTD for the second diffraction. 

As at the stage of diffraction the directions of 
relevant propagation paths are unknown, it is most 
convenient to uniformly distribute the diffracted rays on 
the Keller cone. Thus, each diffracted ray is defined by 
assigning an angle φk = (k-0.5)nπ/NUTD, k = 1,…, NUTD. 
This means that the Keller cone is cut into NUTD parts, 
and one ray is launched in the center of each part. This 
definition is implemented in the ray tracing        
algorithm, with an additional stochastic variation            
of the angles φk, so that in each part of the Keller cone     
a diffracted ray is launched at a random angle                    
(k-1)nπ/NUTD < φk < k nπ/NUTD, k = 1,…, NUTD. As stated 
in [1], such a variation reduces aliasing effects, which 
might occur, for example, at the edges of plane facets. 

While these considerations are more or less obvious, 
the remaining problem is more complicated. As the 
presented ray tracing algorithm works with the RDN, 
which weights each contribution according to the ray 
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density, the correct density of the diffracted rays has to be 
determined. Generally, the ray density nd states the 
number of rays per unit area perpendicular to the 
direction of propagation. In the context of PO and PTD it 
is needed to calculate the equivalent surface area and 
edge length, respectively, of a ray hitting the object. 

To clarify the problem, a two-dimensional 
configuration is considered first (Fig. 6). The object is 
represented by a half-plane, which is hit by an incident 
plane wave at the angle β. This scenario corresponds to a 
cut for a fixed diffraction angle φ. Note that in this 
specific 2D-case the “diffracted” rays have the same 
direction like the reflected rays, and the Keller cone 
reduces to a straight line, which means each incident ray 
will generate one diffracted ray towards the specular 
direction. According to the definition of the ray density, 
the distance between adjacent rays in the 2D-case is 1/nd. 
Thus, each ray can be assigned an equivalent edge length, 

 

 1
sind

dl
n β

= .   (2) 

 
The distance between adjacent diffracted rays is, 

 

 1 1sin
dd

dl
nn

β= =
′

 .  (3) 

 
As expected, the ray density nd' of the diffracted 

wave is equal to the ray density of the incident wave. 
This statement is also true if the incident rays are 
divergent. In that case, both nd and nd' contain a 
divergence factor, which depends on the path length. 
Nevertheless, equation (3) is still valid with these 
considerations. 
 

β

dl

β

nd nd’

 
Fig. 6. Two-dimensional diffraction scheme for 
calculating the ray density. 
 

The realistic case, however, is a three-dimensional 
scenario with incident rays being diffracted at an edge 
(outer wedge angle nπ) of the object. Similar to the 2D-
case, the incident ray density is denoted as nd, but here 
the equivalent cross section of a ray is equal to 1/nd. Each 
ray that hits the edge generates a Keller cone of NUTD 
diffracted rays, as described above. To calculate the ray 
density of the diffracted rays, the equivalent cross section 

of the diffracted rays, 1/nd', has to be determined. 
Apparently, this equivalent cross section is equal to the 
distance between adjacent rays on one Keller cone 
(U / NUTD) multiplied by the distance between adjacent 
Keller cones (dl sin β), i.e., 

 

 
UTD

1 sin
d

U dl
Nn

β=
′

 ,  (4) 

 
where U denotes the perimeter of the Keller cone, 
 

 π 2π sin
2π
nU s β=  .  (5) 

 
In equation (5), s denotes the distance from the point of 
diffraction to the point of observation, which is 
equivalent to the next intersection point of the ray with 
the object. As a result, the ray density of the diffracted 
rays is calculated according to, 
 

 UTD 2

1
π sindn N

n dl sβ
′ =  .  (6) 

 
The equivalent edge length, dl, depends on the 

incident ray density nd and the edge width relevant for 
diffraction [1]. Equation (6) provides the relationship for 
the correct weighting of UTD diffracted field 
contributions and is valid even if the incident wave is not 
a plane wave. In that case, a possible divergence, for 
example, is included in the incident ray density nd and 
thus in the equivalent edge length dl [1]. 

The following section shows that the described 
implementation of the UTD into the SBR algorithm 
allows for a definite improvement of simulation results, 
especially for resonant structures. All simulations 
consider a maximum of one UTD diffraction on each 
propagation path, which might be followed by an 
additional PTD diffraction, so doubly-diffracted field 
contributions are included. 
 

IV. GO/UTD-PO/PTD SIMULATION RESULTS 
 
A. Trihedral and Cavities with UTD 

In this section the simulation examples of Section II 
are modeled with the additional consideration of UTD 
diffracted rays. Figure 7 shows the UTD results of the 
trihedral corner reflector as described in Fig. 1. 
Obviously, the simulation results are definitely improved 
in comparison to Figs. 2 and 3. Especially the step in the 
curve for the vv-polarization around the angle α = -35° is 
reproduced almost exactly. Besides, the characteristic 
resonances in the angular range from -30° to +20° are 
exactly at the same angles like in the reference BI-
MLFMM simulation. Apart from these excellent 
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agreements, Fig. 7 also shows a better accuracy than 
Fig. 2 in the angular range from +90° to +145°. The small 
peak in the curve of the hh-polarized RCS at α = 145° 
corresponds to the exclusion of PTD calculation at 
grazing angles, which has been discussed in Section II. 
Note that shadowing effects are not explicitly considered 
in Fig. 7. 

 

 
 
Fig. 7. Bistatic RCS of the trihedral corner reflector 
(f = 15 GHz, NUTD = 1,000). 
 

Altogether, it is apparent that the UTD provides a 
relevant contribution to the scattered field in the example 
of the trihedral corner reflector. Rays hitting the edges of 
the trihedral are diffracted and have at least one more 
reflection at the object. As can be deduced from Fig. 7, 
only the tracing of such propagation paths will provide 
accurate results over almost the complete angular range 
of the bistatic RCS. 

However, the drawback of this UTD implementation 
is the increased CPU time for the simulation. The reason 
for this is the need for a fine scanning of the object, i.e. 
the number of diffracted rays must be “large enough”. 
The precise meaning of this expression depends on the 
object, of course, but the value NUTD = 1000 proved good 

results in all examples studied so far. The simulation of 
Fig. 7 has also been performed with NUTD = 100 and 
NUTD = 10 (see Section IV.B), which leads to basically 
the same results but the curves are less smooth. When 
using UTD-SBR with a very large number of diffracted 
rays (NUTD = 10,000, see Table 1), a tremendous increase 
of CPU time is observed, while no further improvement 
of results is possible because the data show convergence 
with respect to the number of diffracted rays. 
 
Table 1. CPU times for numbers of UTD rays (on Athlon 
XP3000+ processor). 
 

Simulation parameters CPU time 

N = 10 million, without UTD 20 h 

N = 10 million, NUTD = 10 21 h 

N = 10 million, NUTD = 100 23 h 

N = 10 million, NUTD = 1,000 40 h 

N = 10 million, NUTD = 10,000 262 h 
 
 

 
 
Fig. 8. Monostatic RCS of the cubic cavity (f = 3 GHz, 
NUTD = 1,000). 
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Fig. 9. Monostatic RCS of the cuboid cavity (f = 3 GHz, 
NUTD = 1,000). 
 

As can be deduced from Table 1, the CPU time for 
the calculation without UTD is around 20 h, which 
appears rather high for this simple object. The main 
reason for the stated CPU time is the angular resolution 
of the bistatic RCS, Δα = 0.25°, which means that at each 
intersection of a ray with the object, PO and/or PTD 
contributions have to be calculated to 1,441 observation 
points. As the algorithm is not yet optimized for such a 
large number of receivers, the time for the PO/PTD 
calculations is much larger than the CPU time for the 
geometrical ray tracing, i.e. the calculation of propagation 
paths. 

If UTD is considered with NUTD = 100, the CPU time 
is increased only by 15%. In contrast, the CPU time is 
more than doubled with NUTD = 1,000, and it increases by 
a factor 13 if NUTD is set to 10,000. However, no 
significant improvement is observed at NUTD = 10,000. 
From Table 1 it is obvious that at NUTD = 1,000, more 
than half of the CPU time is spent with the calculation of 
UTD diffracted rays and the associated PO/PTD 
contributions. The convergence of results depending on 
the number of diffracted rays NUTD is considered more in 
detail in Section IV.B. 

For practical use, the example of the cavities studied 
in Section II.C is more important. Consider a ray that hits 

the object at one edge of the aperture. According to the 
method described in the previous section, this ray 
generates NUTD diffracted rays, of which approx. one third 
will enter the cavity. Note that the outer wedge angle is 
3π/2, and only the angular range φ = 0 to φ = π/2 
(measured from the inner walls) will lead to rays 
propagating into the cavity. These rays are further traced 
according to the SBR technique and provide additional 
contributions which are not included in the original 
PO/PTD version of the algorithm. The results of the 
simulations are shown in Figs. 8 and 9, which present an 
excellent improvement of the RCS data with respect to 
the reference MoM simulation, especially in the angular 
range from 0° to 60°. It is remarkable that in this range 
the RCS for hh-polarization is practically identical to the 
reference, while the RCS for vv-polarization is slightly 
higher than the results of the MoM simulation.  
 
B. Convergence and Low-Frequency Considerations 

As stated above, the simulation results in 
Section IV.A have been obtained by generating 1,000 
diffracted rays for each ray hitting an edge of the object, 
i.e. NUTD = 1,000. This setting proved to yield satisfying 
results but leads to the significant drawback of more than 
double CPU time in the case of the trihedral corner 
reflector. Thus, it is very important to study the 
convergence of the results when using the UTD extension 
at different values for NUTD. 
For this purpose, the simulation shown in Fig. 7 has been 
repeated at NUTD = 10 and NUTD = 100 (Figs. 10 and 11 – 
for convenience, only the results for vv-polarization are 
given in this paper). As becomes obvious from Fig. 10, 
the setting NUTD = 10 already leads to the correct shape of 
the bistatic RCS curve, including the step at the angle α = 
-35°. However, the curve is overlaid by smaller 
fluctuations, which are caused by the stochastic nature of 
the described approach. Nevertheless, the relatively small 
number of diffracted rays provides good results in this 
test case, while only a small amount of additional CPU 
time is required. 
 

 
Fig. 10. Bistatic RCS of the trihedral corner reflector 
(f = 15 GHz, NUTD = 10). 
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As can be expected from the law of large numbers, 
the fluctuations decrease at NUTD = 100 (Fig. 11), but for 
high-quality results, NUTD = 1,000 should be chosen (cf. 
results in Fig. 7). Also, it must be noted that the required 
number of diffracted rays is always connected to the 
number N of rays in the simulation. For example, if 
N' = 10 N is used in a second simulation, the number 
NUTD of diffracted rays on a single Keller cone can be 
decreased to one tenth of the original value, in order to 
obtain the same density of diffracted rays and thus the 
same accuracy of the UTD diffracted rays contribution. 

 
Fig. 11. Bistatic RCS of the trihedral corner reflector 
(f = 15 GHz, NUTD = 100). 
 

Further studies have been made with respect to the 
frequency range, in which the presented UTD 
implementation is valid. It is well-known that the UTD as 
implemented in the ray tracing algorithm assumes 
infinitely extended edges. That is the reason why this 
method is a typical asymptotic or high-frequency 
approximation. In the test case studied above (f = 
15 GHz) the length of the wedges at the aperture is 50 
wavelengths. The same object has also been studied at 
f = 6.4 GHz and f = 3 GHz, where the relative wedge 
lengths are 21 wavelengths and 10 wavelengths, 
respectively. As can be deduced from Figs. 12 and 13, the 
UTD extension still works very well at both frequencies. 
Especially the step of the curve at α = -35°, which is 
independent of frequency, is reproduced almost exactly. 
Although there are some minor oscillation artefacts at 
3 GHz, the accuracy of the GO/UTD-PO/PTD algorithm 
is remarkable. 

It must be pointed out that the UTD simulations in 
this section have been performed by considering a 
maximum of one UTD diffraction for each ray. Thus, 
doubly diffracted paths (first UTD, later PTD, possible 
reflections before UTD or between UTD and PTD) are 
included. Further simulations at f = 3 GHz have been 
studied by considering a maximum of two and three UTD 
diffractions for each ray. These settings lead to an 
immense increase of CPU time but – apart from 

additional “clutter” – do not provide a significant change 
of simulation results. Consequently, double UTD 
diffraction does not yield a relevant contribution in this 
example, as might have been expected. Thus, the 
simulations in this section can be regarded to be 
convergent not only with respect to the number NUTD of 
diffracted rays on the Keller cone, but also in terms of 
multiple diffractions. 

 
Fig. 12. Bistatic RCS of the trihedral corner reflector 
(f = 6.4 GHz, NUTD = 1000). 
 

 
Fig. 13. Bistatic RCS of the trihedral corner reflector 
(f = 3 GHz, NUTD = 1000). 
 
C. Generic Missile Model 

The last simulation example is a generic missile 
model consisting of 44,000 triangular facets, which has 
been proposed in [23]. A picture of the CAD model can 
be found in [1], where the monostatic RCS has been 
calculated in the azimuth plane for vv-polarization at 
f = 12 GHz. This simulation is repeated here with the 
additional consideration of UTD contributions as 
described above. Although the results in Fig. 14 suggest 
an even better agreement than without UTD, the mean 
error of both simulations is exactly the same (1.7 dB). 
However, if only the angular range from φ = 140° to 
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φ = 180° is considered, i.e. the angles with the most 
distinct deviation in [1], the mean error decreases from 
2.5 dB without UTD to 2.2 dB with the use of UTD. 
Thus, the UTD improves the results for angles, where the 
wave impinges on the wedged back side of the wings, 
whereas a slight stochastic deviation is imposed at angles 
with excellent agreement compared to the reference data. 
Using NUTD = 1,000 for this simulation, the CPU time is 
increased by approx. 16%, which is an acceptable effort 
for this object. Thus, this simulation example proves that 
the application of the implemented UTD is practicable 
not only for simple objects but also for realistic CAD 
models. 

 
Fig. 14. Monostatic RCS of the generic missile at f = 12 
GHz, vv-polarization. 
 

The generic missile has also been studied in terms of 
bistatic RCS. The incident wave is parallel to the xy-plane 
and hits the object at φ0 = 135°, i.e. from the rear side 
(Fig. 15). For the evaluation of results, the bistatic angle 
φ is calculated from the nose direction. Specular 
reflection from the body of the missile is expected at 
φ = 45°, forward scattering is equivalent to φ = 315°. As 
in the previous simulation, the frequency is 12 GHz and 
the vv-polarized fields are evaluated. 

 

φ

x

y

 
Fig. 15. Geometric scheme for bistatic RCS simulations 
of the generic missile. 
 

From the results in Fig. 16, it can be observed that 
the original GO-PO/PTD algorithm already yields rather 
accurate results. However, as the dynamic range is very 
large, significant deviations occur at certain angles, 
leading to a mean error of 8.6 dB. By tracing UTD 
diffracted rays, this error is reduced to 7.9 dB. Obviously, 
additional propagation effects and coupling mechanisms, 
such as creeping waves, are relevant when studying 
bistatic RCS of a convex-like target. Nevertheless, the 
accuracy of the bistatic results obtained by the presented 
ray tracing algorithm is remarkable, both for the original 
GO-PO/PTD version as well as for the newly developed 
UTD Shooting-and-Bouncing extension. 

 

 
 
Fig. 16. Bistatic RCS of the generic missile at f = 12 
GHz, vv-polarization. 
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V. CONCLUSION 
 

This paper presents an important extension to the 
formerly proposed GO-PO/PTD ray tracing algorithm for 
RCS simulations of large and complex objects. The novel 
implementation of the UTD in a SBR fashion makes each 
relevant ray generate a given number of diffracted rays on 
the Keller cone, which are further traced through the 
scenario. Thus, reflected-diffracted-reflected propagation 
paths with multiple reflections and one diffraction in 
between are added to the original SBR concept. The 
combination of the well-known UTD and the newly 
developed, sophistiacted adaptation of the ray-density 
normalization to diffracted rays provides a very powerful 
algorithm to analyze the scattered fields of arbitrary 
objects. While the original GO-PO/PTD formulation 
provides excellent results at more or less convex objects, 
the UTD extension is required where diffracted rays 
might experience further interactions with the object and 
thus generate relevant contributions to the total scattered 
fields. A typical example for that case is a cavity, where 
rays are diffracted at the aperture and subsequently 
propagate into the cavity. However, also complex 
realistic objects can be treated by the hybrid GO/UTD-
PO/PTD algorithm. As is shown by comparison with 
numerically exact solutions in the examples above, the 
elementary implementation of the UTD extension already 
provides very accurate results for both canonic and 
realistic objects. 
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